419
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials

ORCID Icon, , , , , , , , , , , , , & show all
Pages 2307-2324 | Received 14 Jan 2023, Accepted 05 Apr 2023, Published online: 03 May 2023

References

  • V’Kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–170. doi:10.1038/s41579-020-00468-6
  • Kampf G, Brüggemann Y, Kaba HEJ, et al. Potential sources, modes of transmission and effectiveness of prevention measures against SARS-CoV-2. J Hosp Infect. 2020;106:678–697. doi:10.1016/j.jhin.2020.09.022
  • Meyerowitz EA, Richterman A, Gandhi RT, Sax PE. Transmission of SARS-CoV-2: a review of viral, host, and environmental factors. Ann Intern Med. 2021;174:69–79. doi:10.7326/M20-5008
  • Kraay AN, Hayashi MAL, Berendes DM, et al. Risk for fomite-mediated transmission of SARS-CoV-2 in child daycares, schools, nursing homes, and offices. Emerg Infect Dis. 2021;27:1229. doi:10.3201/eid2704.203631
  • Mohamadi M, Babington-Ashaye A, Lefort A, Flahault A. Risks of infection with SARS-CoV-2 due to contaminated surfaces: a scoping review. Int J Environ Res Public Health. 2021;18:11019. doi:10.3390/ijerph182111019
  • EPA. Guidance for products adding residual efficacy claims; 2022. Available from: https://www.epa.gov/pesticide-registration/guidance-products-adding-residual-efficacy-claims. Accessed April 21, 2023.
  • Tiwari S, Juneja S, Ghosal A, et al. Antibacterial and antiviral high-performance nanosystems to mitigate new SARS-CoV-2 variants of concern. Curr Opin Biomed Eng. 2022;21:100363. doi:10.1016/j.cobme.2021.100363
  • Yasamineh S, Kalajahi HG, Yasamineh P, et al. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology. 2022;20(1):440. doi:10.1186/s12951-022-01625-0
  • Dutta PK, Shrestha S, Wang B Silver in health and medicinal applications, e-book; 2021.
  • Jeremiah SS, Miyakawa K, Morita T, Yamaoka Y, Ryo A. Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochem Biophys Res Commun. 2020;533:195–200. doi:10.1016/j.bbrc.2020.09.018
  • Merkl P, Long S, McInerney GM, Sotiriou GA. Antiviral activity of silver, copper oxide and zinc oxide nanoparticle coatings against SARS-CoV-2. Nanomaterials. 2021;11:1312. doi:10.3390/nano11051312
  • Dadashpour M, Firouzi-Amandi A, Pourhassan-Moghaddam M, et al. Biomimetic synthesis of silver nanoparticles using Matricaria chamomilla extract and their potential anticancer activity against human lung cancer cells. Mater Sci Eng C Mater Biol Appl. 2018;92:902–912. doi:10.1016/j.msec.2018.07.053
  • Chaudhary V, Mostafavi E, Kaushik A. De-coding Ag as an efficient antimicrobial nano-system for controlling cellular/biological functions. Matter Us. 2022;5(7):1995–1998. doi:10.1016/j.matt.2022.06.024
  • Zhang Q, Hu Y, Masterson CM, et al. When function is biological: discerning how silver nanoparticle structure dictates antimicrobial activity. iScience. 2022;25(7):104475. doi:10.1016/j.isci.2022.104475
  • Sabbani S, Gallego-Perez D, Nagy A, et al. Synthesis of silver-zeolite films on micropatterned porous alumina and its application as an antimicrobial substrate. Micropor Mesopor Mat. 2010;135:131–136. doi:10.1016/j.micromeso.2010.06.020
  • Nagy A, Harrison A, Sabbani S, et al. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine. 2011;6:1833–1852. doi:10.2147/IJN.S24019
  • Lee SH, Jun BH. Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci. 2019;20:865. doi:10.3390/ijms20040865
  • Crabtree JH, Burchette RJ, Siddiqi RA, Huen IT, Hadnott LL, Fishman A. The Efficacy of Silver-ion implanted catheters in reducing peritoneal dialysis-related infections. Perit Dial Int. 2003;23:368–374. doi:10.1177/089686080302300410
  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet JB. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 2008;61:869–876. doi:10.1093/jac/dkn034
  • Hebeish A, El-Rafie MH, El-Sheikh MA, Seleem AA, El-Naggar ME. Antimicrobial wound dressing and anti-inflammatory efficacy of silver nanoparticles. Int J Biol Macromol. 2014;65:509–515. doi:10.1016/j.ijbiomac.2014.01.071
  • Elechiguerra JL, Burt JL, Morones JR, et al. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology. 2005;3:6. doi:10.1186/1477-3155-3-6
  • Galdiero S, Falanga A, Vitiello M, et al. Silver nanoparticles as potential antiviral agents. Molecules. 2011;16:8894–8918. doi:10.3390/molecules16108894
  • Sagripanti JL, Routson LB, Lytle CD. Virus inactivation by copper or iron ions alone and in the presence of peroxide. Appl Environ Microbiol. 1993;59:4374–4376. doi:10.1128/aem.59.12.4374-4376.1993
  • Jordan FT, Nassar TJ. The influence of copper on the survival of infectious bronchitis vaccine virus in water. Vet Rec. 1971;89:609–610. doi:10.1136/vr.89.23.609
  • Totsuka A, Otaki K. The effects of amino acids and metals on the infectivity of poliovirus ribonucleic acid. Jpn J Microbiol. 1974;18:107–112. doi:10.1111/j.1348-0421.1974.tb00797.x
  • Kittler S, Greulich C, Diendorf J, Koller M, Epple M. Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater. 2010;22:4548–4554. doi:10.1021/cm100023p
  • Auerbach SM, Carrado KA, Dutta PK. Handbook of Zeolite Science and Technology. CRC Press; 2003.
  • Dutta P, Wang B. Zeolite-supported silver as antimicrobial agents. Coord Chem Rev. 2019;383:1–29. doi:10.1016/j.ccr.2018.12.014
  • Walji SD, Bruder MR, Aucoin MG. Virus matrix interference on assessment of virucidal activity of high-touch surfaces designed to prevent hospital-acquired infections. Antimicrob Resist Infect Control. 2021;10:133. doi:10.1186/s13756-021-01001-x
  • Hodek J, Zajícová V, Lovětinská-šlamborová I, et al. Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiol. 2016;16(Suppl 1):56. doi:10.1186/s12866-016-0675-x
  • Baker N, Williams AJ, Tropsha A, Ekins S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm Res Dordr. 2020;37:104. doi:10.1007/s11095-020-02842-8
  • Ogilvie BH, Solis-Leal A, Lopez JB, et al. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J Hosp Infect. 2021;108:142–145. doi:10.1016/j.jhin.2020.11.023
  • Gerba CP. Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol. 2015;81:464–469. doi:10.1128/AEM.02633-14
  • Wang B, Li YZ, Shao CR, Cui MY, Dutta PK. Rapid and high yield synthesis method of colloidal nano faujasite. Micropor Mesopor Mat. 2016;230:89–99. doi:10.1016/j.micromeso.2016.05.001
  • Souza TGF, Ciminelli VST, Mohallem NDS. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J Phys Conf Ser. 2016;733:012039. doi:10.1088/1742-6596/733/1/012039
  • EPA. Standard operating procedure for OECD quantitative method for evaluating bactericidal and mycobactericidal activity of microbicides used on hard, non-porous surfaces, MB-25-05. Available from: https://www.epa.gov/sites/default/files/2019-05/documents/mb-25-05.pdf. Accessed October 2, 2022.
  • Chen YN, Hsueh YH, Hsieh CT, Tzou DY, Chang PL. Antiviral activity of graphene-silver nanocomposites against non-enveloped and enveloped viruses. Int J Environ Res Public Health. 2016;13:430. doi:10.3390/ijerph13040430
  • Hosseini M, Chin AWH, Behzadinasab S, Poon LLM, Ducker WA. Cupric oxide coating that rapidly reduces infection by SARS-CoV-2 via solids. ACS Appl Mater Interfaces. 2021;13:5919–5928. doi:10.1021/acsami.0c19465
  • Balagna C, Perero S, Percivalle E, Nepita EV, Ferraris M. Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceram. 2020;1:100006. doi:10.1016/j.oceram.2020.100006
  • Butot S, Baert L, Zuber S. Assessment of antiviral coatings for high-touch surfaces by using human coronaviruses HCoV-229E and SARS-CoV-2. Appl Environ Microbiol. 2021;87:e0109821. doi:10.1128/AEM.01098-21
  • Flincec Grgac S, Tarbuk A, Dekanic T, Sujka W, Draczynski Z. The chitosan implementation into cotton and polyester/cotton blend fabrics. Materials. 2020;13:1616. doi:10.3390/ma13071616
  • Engelbrecht K, Ambrose D, Sifuentes L, et al. Decreased activity of commercially available disinfectants containing quaternary ammonium compounds when exposed to cotton towels. Am J Infect Control. 2013;41:908–911. doi:10.1016/j.ajic.2013.01.017
  • Hinchliffe DJ, Condon BD, Madison CA, Reynolds M, Hron RJ. An optimized co-formulation minimized quaternary ammonium compounds adsorption onto raw cotton disposable disinfecting wipes and maintained efficacy against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis, and Pseudomonas aeruginosa. Text Res J. 2018;88:2329–2338. doi:10.1177/0040517517720505
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 2012;86:1123–1136. doi:10.1007/s00204-012-0837-z
  • Imani SM, Ladouceur L, Marshall T, et al. Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano. 2020;14:12341–12369. doi:10.1021/acsnano.0c05937
  • Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: a critical review. Coord Chem Rev. 2022;464:214559.
  • Minoshima M, Lu Y, Kimura T, et al. Comparison of the antiviral effect of solid-state copper and silver compounds. J Hazard Mater. 2016;312:1–7. doi:10.1016/j.jhazmat.2016.03.023
  • Roy S, Sarkhel S, Bisht D, Hanumantharao SN, Rao S, Jaiswal A. Antimicrobial mechanisms of biomaterials: from macro to nano. Biomater Sci. 2022;10:4392. doi:10.1039/D2BM00472K
  • Pal A, Goswami R, Roy DN. A critical assessment on biochemical and molecular mechanisms of toxicity developed by emerging nanomaterials on important microbes. Environ Nanotechnol Monit Manag. 2021;16:100485. doi:10.1016/j.enmm.2021.100485
  • Gavanji S, Larki B, Mehrasa M. A review of effects of molecular mechanism of silver nanoparticles on some microorganism and eukaryotic cells. Tech J Eng Appl Sci. 2013;3(1):48–58.
  • Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S. Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol. 2016;42:46–56. doi:10.3109/1040841X.2013.879849
  • Lara HH, Ayala-Nunez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 2010;8:1. doi:10.1186/1477-3155-8-1
  • Warnes Sarah L, Summersgill Emma N, Keevil CW. Inactivation of murine norovirus on a range of copper alloy surfaces is accompanied by loss of capsid integrity. Appl Environ Microbiol. 2015;81:1085–1091. doi:10.1128/AEM.03280-14
  • Vincent M, Duval RE, Hartemann P, Engels‐Deutsch M. Contact killing and antimicrobial properties of copper. J Appl Microbiol. 2018;124:1032–1046. doi:10.1111/jam.13681
  • Korant B, Kauer J, Butterworth B. Zinc ions inhibit replication of rhinoviruses. Nature. 1974;248:588–590. doi:10.1038/248588a0
  • Liao L, Xiao W, Zhao M, et al. Can N95 respirators be reused after disinfection? How many times? ACS Nano. 2020;14:6348–6356. doi:10.1021/acsnano.0c03597
  • Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588:498–502. doi:10.1038/s41586-020-2665-2
  • Schrank CL, Minbiole KPC, Wuest WM. Are quaternary ammonium compounds, the workhorse disinfectants, effective against severe acute respiratory syndrome-coronavirus-2? ACS Infect Dis. 2020;6:1553–1557. doi:10.1021/acsinfecdis.0c00265
  • Obłąk E, Futoma-Kołoch B, Wieczyńska A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World J Microbiol Biotechnol. 2021;37. doi:10.1007/s11274-020-02978-0
  • Simon M, Veit M, Osterrieder K, Gradzielski M. Surfactants–compounds for inactivation of SARS-CoV-2 and other enveloped viruses. Curr Opin Colloid Interface Sci. 2021;55:101479. doi:10.1016/j.cocis.2021.101479
  • Wessels S, Ingmer H. Modes of action of three disinfectant active substances: a review. Regul Toxicol Pharmacol. 2013;67:456–467. doi:10.1016/j.yrtph.2013.09.006
  • Dewey HM, Jones JM, Keating MR, Budhathoki-Uprety J. Increased use of disinfectants during the COVID-19 pandemic and its potential impacts on health and safety. ACS Chem Health Saf. 2021;29:27–38. doi:10.1021/acs.chas.1c00026
  • Khokhar M, Roy D, Purohit P, Goyal M, Setia P. Viricidal treatments for prevention of coronavirus infection. Pathog Glob Health. 2020;114:349–359. doi:10.1080/20477724.2020.1807177
  • Bright KR, Sicairos-Ruelas EE, Gundy PM, Gerba CP. Assessment of the antiviral properties of zeolites containing metal ions. Food Environ Virol. 2009;1:37–41. doi:10.1007/s12560-008-9006-1
  • Tuladhar E, de Koning MC, Fundeanu I, Beumer R, Duizer E. Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl Environ Microbiol. 2012;78:2456–2458. doi:10.1128/AEM.07738-11
  • Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012;4:3044–3068. doi:10.3390/v4113044
  • Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703–715. doi:10.1111/j.1365-2672.2005.02664.x
  • Springthorpe VS, Grenier JL, Lloyd-Evans N, Sattar SA. Chemical disinfection of human rotaviruses: efficacy of commercially-available products in suspension tests. Epidemiol Infect. 1986;97:139–161.
  • Hora PI, Arnold WA. Photochemical fate of quaternary ammonium compounds in river water. Environ Sci. 2020;22:1368–1381. doi:10.1039/d0em00086h
  • Hora PI, Pati SG, McNamara PJ, Arnold WA. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: consideration of environmental implications. Environ Sci Technol Lett. 2020;7:622–631. doi:10.1021/acs.estlett.0c00437
  • Wijnhoven SW, Peijnenburg WJGM, Herberts CA, et al. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology. 2009;3:109–138. doi:10.1080/17435390902725914
  • Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers. Environ Sci Technol. 2011;45:1177–1183. doi:10.1021/es103316q
  • Sadique MA, Yadav S, Ranjan P, et al. High-performance antiviral nano-systems as a shield to inhibit viral infections: SARS-CoV-2 as a model case study. J Mater Chem B. 2021;9(23):4620–4642. doi:10.1039/d1tb00472g
  • Hashemi B, Akram FA, Amirazad H, et al. Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. J Drug Deliv Sci Technol. 2022;67:102967. doi:10.1016/j.jddst.2021.102967