536
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Functional Peptide-Loaded Gelatin Nanoparticles as Eyedrops for Cornea Neovascularization Treatment

, , , , , , , , , ORCID Icon & ORCID Icon show all
Pages 1413-1431 | Received 23 Nov 2022, Accepted 07 Mar 2023, Published online: 23 Mar 2023

References

  • Zhang C, Yin Y, Zhao J, et al. An update on novel ocular nanosystems with possible benefits in the treatment of corneal neovascularization. Int J Nanomedicine. 2022;17:4911–4931. doi:10.2147/IJN.S375570
  • Britton Anna K, Crayford Basil B. Resolution of refractory corneal neovascularization with subconjunctival bevacizumab. Case Rep Ophthalmol. 2020;11:652–657. doi:10.1159/000510114
  • Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Romanian J Ophthalmol. 2019;63:15–22. doi:10.22336/rjo.2019.4
  • Nicholas MP, Mysore N. Corneal neovascularization. Exp Eye Res. 2021;202:108363. doi:10.1016/j.exer.2020.108363
  • Brunner M, Romano V, Steger B, et al. Imaging of corneal neovascularization: optical coherence tomography angiography and fluorescence angiography. Invest Ophthalmol Vis Sci. 2018;59:1263–1269. doi:10.1167/iovs.17-22035
  • Hsu C-C, Chang H-M, Lin T-C, et al. Corneal neovascularization and contemporary antiangiogenic therapeutics. J Chin Med Assoc. 2015;78:323–330. doi:10.1016/j.jcma.2014.10.002
  • Roshandel D, Eslani M, Baradaran-Rafii A, et al. Current and emerging therapies for corneal neovascularization. Ocul Surf. 2018;16(4):398–414. doi:10.1016/j.jtos.2018.06.004
  • Al-Debasi T, Al-Bekairy A, Alkatheri A, Al Harbi S, Mansour M, Albekairy A. Topical versus subconjunctival anti-vascular endothelial growth factor therapy (Bevacizumab, Ranibizumab and Aflibercept) for treatment of corneal neovascularization. Saudi J Ophthalmol. 2017;31(2):99–105. doi:10.1016/j.sjopt.2017.02.008
  • Barry Z, Park B, Corson TW. Pharmacological potential of small molecules for treating corneal neovascularization. Molecules. 2020;25(3468):1–40. doi:10.3390/molecules25153468
  • Feizi S, Azari A, Safapour S. Therapeutic approaches for corneal neovascularization. Eye Vision. 2017;4(28):1–10. doi:10.1186/s40662-017-0094-6
  • Rojas M, Lemtalsi T, Toque H, et al. NOX2-induced activation of arginase and diabetes-induced retinal endothelial cell senescence. Antioxidants. 2017;6(43):1–13. doi:10.3390/antiox6020043
  • Khayrullina G, Bermudez S, Byrnes K. Inhibition of NOX2 reduces locomotor impairment, inflammation, and oxidative stress after spinal cord injury. J Neuroinflammation. 2015;12:172. doi:10.1186/s12974-015-0391-8
  • Singh PK, Saadi A, Sheeni Y, Shekh-Ahmad T. Specific inhibition of NADPH oxidase 2 modifies chronic epilepsy. Redox Biol. 2022;58:102549. doi:10.1016/j.redox.2022.102549
  • Hu CG, Wu ZF, Huang ZH, et al. Nox2 impairs VEGF-A-induced angiogenesis in placenta via mitochondrial ROS-STAT3 pathway. Redox Biol. 2021;45:102051. doi:10.1016/j.redox.2021.102051
  • Ucgul RK, Celebi S, Yilmaz NS, Bukan N, Ucgul AY. Intrastromal versus subconjunctival anti-VEGF agents for treatment of corneal neovascularization: a rabbit study. Eye. 2021;35(11):3123–3130. doi:10.1038/s41433-020-01347-3
  • Fraunfelder FT. Chapter 2 - Ocular drug delivery and toxicology. In: Fraunfelder FFT, Fraunfelder FRW, editors. Drug-Induced Ocular Side Effects. 8th ed. London: Elsevier; 2021:3–11.
  • Loftsson T. Topical drug delivery to the retina: obstacles and routes to success. Expert Opin Drug Deliv. 2022;19(1):9–21. doi:10.1080/17425247.2022.2017878
  • Tian B, Bilsbury E, Doherty S, et al. Ocular drug delivery: advancements and Innovations. Pharmaceutics. 2022;14(9):1931. doi:10.3390/pharmaceutics14091931
  • Srividya G, Rapalli VK, Waghule T, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10:27835–27855. doi:10.1039/D0RA04971A
  • Joseph R, Venkatraman S. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine. 2017;12:683–702. doi:10.2217/nnm-2016-0379
  • Mun E, Morrison P, Williams A, Khutoryanskiy V. On the barrier properties of the cornea: a microscopy study of the penetration of fluorescently labeled nanoparticles, polymers, and sodium fluorescein. Mol Pharm. 2014;11:3556–3564. doi:10.1021/mp500332m
  • Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev. 1995;16:61–73. doi:10.1016/0169-409X(95)00017-2
  • Yadav T, Jat RK. Microspheres as an ocular drug delivery system – a review. J Drug Deliv Therap. 2013;3:114–123. doi:10.22270/jddt.v3i1.343
  • Nagarwal R, Kant S, Singh P, Maiti P, Pandit J. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009;136:2–13. doi:10.1016/j.jconrel.2008.12.018
  • Zhu S, Gong L, Li Y, Xu H, Gu Z, Zhao Y. Safety assessment of nanomaterials to eyes: an important but neglected issue. Adv Sci. 2019;6(16):1802289. doi:10.1002/advs.201802289
  • Mobaraki M, Soltani M, Zare Harofte S, et al. Biodegradable nanoparticle for cornea drug delivery: focus review. Pharmaceutics. 2020;12(12):1–26. doi:10.3390/pharmaceutics12121232
  • Sahoo N, Sahoo R, Biswas N, Guha A, Kuotsu K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int J Biol Macromol. 2015;81:317–331. doi:10.1016/j.ijbiomac.2015.08.006
  • Yasmin R, Shah M, Khan S, Ali R. Gelatin nanoparticles: a potential candidate for medical applications. Nanotechnol Rev. 2017;6:191–207. doi:10.1515/ntrev-2016-0009
  • Huang H-Y, Wang M-C, Chen Z-Y, et al. Gelatin–epigallocatechin gallate nanoparticles with hyaluronic acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via inflammatory relief. Int J Nanomedicine. 2018;13:7251–7273. doi:10.2147/IJN.S173198
  • Chuang YL, Fang HW, Ajitsaria A, et al. Development of Kaempferol-loaded gelatin nanoparticles for the treatment of corneal neovascularization in mice. Pharmaceutics. 2019;11(635):1–16. doi:10.3390/pharmaceutics11120635
  • Coester C, Langer K, Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation - A new preparation method, surface modifications and cell uptake. J Microencapsul. 1999;17:187–193.
  • Ofokansi K, Winter G, Fricker G, Coester C. Matrix-loaded biodegradable gelatin nanoparticles as new approach to improve drug loading and delivery. Eur J Pharm Biopharm. 2010;76(1):1–9. doi:10.1016/j.ejpb.2010.04.008
  • Kalyanaraman B, Darley-Usmar V, Davies K, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radic Biol Med. 2012;52:1–6. doi:10.1016/j.freeradbiomed.2011.09.030
  • Wang J-H, Tseng C-L, Lin F-L, et al. Topical application of TAK1 inhibitor encapsulated by gelatin particle alleviates corneal neovascularization. Theranostics. 2022;12:657–674. doi:10.7150/thno.65098
  • World Health Organization. Blindness and vision impairment; 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed March 10, 2023.
  • Tseng C-L, Chen K-H, Su W-Y, Lee Y-H, Wu -C-C, Lin F-H. Cationic gelatin nanoparticles for drug delivery to the ocular surface: in vitro and in vivo evaluation. J Nanomater. 2013;2013:1–11. doi:10.1155/2013/238351
  • Rey F, Cifuentes-Pagano E, Kiarash A, Quinn M, Pagano P. Novel competitive inhibitor of NAD(P)H oxidase assembly attenuates vascular O2− and systolic blood pressure in mice. Circ Res. 2001;89:408–414. doi:10.1161/hh1701.096037
  • Li Z, Gu L. Effects of mass ratio, pH, temperature, and reaction time on fabrication of partially purified pomegranate ellagitannin-gelatin nanoparticles. J Agric Food Chem. 2011;59:4225–4231. doi:10.1021/jf200024d
  • Ahsan S, Rao C. The role of surface charge in the desolvation process of gelatin: implications in nanoparticle synthesis and modulation of drug release. Int J Nanomedicine. 2017;12:795–808. doi:10.2147/IJN.S124938
  • Vinjamuri BP, Papachrisanthou K, Haware R, Chougule M. Gelatin solution pH and incubation time influences the size of the nanoparticles engineered by desolvation. J Drug Deliv Sci Technol. 2021;63:102423. doi:10.1016/j.jddst.2021.102423
  • Zhang T, Yu Z, Ma Y, Chiou B-S, Liu F, Zhong F. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocoll. 2022;124:107270. doi:10.1016/j.foodhyd.2021.107270
  • Slusarewicz P, Zhu K, Hedman T. Kinetic characterization and comparison of various protein crosslinking reagents for matrix modification. J Mater Sci Mater Med. 2010;21(4):1175–1181. doi:10.1007/s10856-010-3986-8
  • Solanki P, Sajwan R. Gelatin nanoparticles as a delivery system for proteins. J Nanomed Res. 2015;2:18–20. doi:10.15406/jnmr.2015.02.00018
  • Potapovitch A, Suhan T, Shutava T, Kostyuk V. Receptor-mediated endocytosis is an important way for gelatin nano-particles penetration into cells. J Belarusian State Univ Biol. 2020;3–10. doi:10.33581/2521-1722-2020-1-3-10
  • Cifuentes-Pagano E, Meijles DN, Pagano PJ. The quest for selective nox inhibitors and therapeutics: challenges, triumphs and pitfalls. Antioxid Redox Signal. 2014;20(17):2741–2754. doi:10.1089/ars.2013.5620
  • DelBaugh R, Chen Q, Devine I, et al. Nox2ds-Tat, A Peptide Inhibitor of NADPH Oxidase, exerts cardioprotective effects by attenuating reactive oxygen species during ischemia/reperfusion injury. Am J Biomed Sci. 2016;8:208–227.
  • Hachisuka H, Dusting G, Abberton K, Morrison W, Jiang F. Role of NADPH oxidase in tissue growth in a tissue engineering chamber in rats. J Tissue Eng Regen Med. 2008;2:430–435. doi:10.1002/term.115
  • Xia C, Meng Q, Liu L-Z, Rojanasakul Y, Wang X-R, Jiang B-H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res. 2007;67:10823–10830. doi:10.1158/0008-5472.CAN-07-0783
  • Chan E, Wijngaarden P, Liu G-S, Jiang F, Peshavariya H, Dusting G. Involvement of Nox2 NADPH oxidase in retinal neovascularization. Invest Ophthalmol Vis Sci. 2013;54:7061–7067. doi:10.1167/iovs.13-12883
  • Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res. 2006;71:226–235. doi:10.1016/j.cardiores.2006.04.015
  • Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313. doi:10.1152/physrev.00044.2005
  • Tsai C-H, Wang P-Y, Lin IC, Huang H, Liu G-S, Tseng C-L. Ocular drug delivery: role of degradable polymeric nanocarriers for ophthalmic application. Int J Mol Sci. 2018;19(2830):1–20. doi:10.3390/ijms19092830
  • Castro B, Fulgêncio G, Domingos L, Cotta O, Silva-Cunha A, Fialho S. Positively charged polymeric nanoparticles improve ocular penetration of tacrolimus after topical administration. J Drug Deliv Sci Technol. 2020;60:101912. doi:10.1016/j.jddst.2020.101912
  • Des Rieux A, Fievez V, Garinot M, Schneider Y-J, Preat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27. doi:10.1016/j.jconrel.2006.08.013
  • Li Q, Dinculescu A, Shan Z, et al. Downregulation of p22phox in retinal pigment epithelial cells inhibits choroidal neovascularization in mice. Mol Ther. 2008;16:1688–1694. doi:10.1038/mt.2008.164
  • Vogel J, Kruse C, Zhang M, Schröder K. Nox4 supports proper capillary growth in exercise and retina neo-vascularization: nox4 in exercise. J Physiol. 2015;593:2145–2154. doi:10.1113/jphysiol.2014.284901
  • Wilkinson-Berka J, Deliyanti D, Rana I, et al. NADPH oxidase, NOX1, mediates vascular injury in ischemic retinopathy. Antioxid Redox Signal. 2014;20:2726–2740. doi:10.1089/ars.2013.5357
  • Gu X-J, Liu X, Zhao Y, et al. Involvement of NADPH oxidases in alkali burn-induced corneal injury. Int J Mol Med. 2016;38:75–82. doi:10.3892/ijmm.2016.2594
  • Chan E, Wijngaarden P, Chan E, et al. NADPH oxidase 2 plays a role in experimental corneal neovascularisation. Clin Sci. 2016;130:683–696.
  • Dastjerdi M, Sadrai Z, Saban D, Zhang Q, Dana R. Corneal penetration of topical and subconjunctival Bevacizumab. Invest Ophthalmol Vis Sci. 2011;52:8718–8723. doi:10.1167/iovs.11-7871
  • Huang L, Gao H, Wang Z, Zhong Y, Hao L, Du Z. Combination nanotherapeutics for dry eye disease treatment in a rabbit model. Int J Nanomedicine. 2021;16:3613–3631. doi:10.2147/IJN.S301717
  • Brandes R. A radical adventure: the quest for specific functions and inhibitors of vascular NAPDH oxidases. Circ Res. 2003;92:583–585. doi:10.1161/01.RES.0000066880.62205.B0
  • Fukai M. VEGF signaling through NADPH oxidase-derived ROS. Antioxid Redox Signal. 2007;9:731–739. doi:10.1089/ars.2007.1556
  • Fukai T, Fukai M. Cross-talk between NADPH oxidase and mitochondria: role in ROS signaling and angiogenesis. Cells. 2020;9:1849. doi:10.3390/cells9081849
  • Zuo L, Fan Y, Wang F, Gu Q, Xu X. A SiRNA targeting vascular endothelial growth factor- A inhibiting experimental corneal neovascularization. Curr Eye Res. 2010;35:375–384. doi:10.3109/02713681003597230
  • Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B. Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res. 2000;70:419–428. doi:10.1006/exer.1999.0790