279
Views
9
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Nanoparticles Mediated circROBO1 Silencing to Inhibit Hepatocellular Carcinoma Progression by Modulating miR-130a-5p/CCNT2 Axis

, , , , , , , & show all
Pages 1677-1693 | Received 09 Dec 2022, Accepted 07 Mar 2023, Published online: 30 Mar 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Xu M, Yang L, Lin Y, et al. Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnol. 2022;20(1):427. doi:10.1186/s12951-022-01615-2
  • Ding J, Wen Z. Survival improvement and prognosis for hepatocellular carcinoma: analysis of the SEER database. BMC Cancer. 2021;21(1):1157. doi:10.1186/s12885-021-08904-3
  • Chen L, Shan G. CircRNA in cancer: fundamental mechanism and clinical potential. Cancer Lett. 2021;505:49–57. doi:10.1016/j.canlet.2021.02.004
  • Zhang Q, Wang W, Zhou Q, et al. Roles of circRNAs in the tumour microenvironment. Mol Cancer. 2020;19(1):14. doi:10.1186/s12943-019-1125-9
  • Chen M, Liu Q, Song M, et al. CircCLTH promotes skeletal muscle development and regeneration. Epigenetics. 2022;17(13):2296–2317. doi:10.1080/15592294.2022.2117115
  • Wang J, Wen Y, Xu J, et al. CircRIMKLB promotes myoblast proliferation and inhibits differentiation by sponging miR-29c to release KCNJ12. Epigenetics. 2022;17(12):1686–1700. doi:10.1080/15592294.2022.2058211
  • Shen X, Tang J, Huang Y, et al. CircRNF111 contributes to adipocyte differentiation by elevating PPARγ expression via miR-27a-3p. Epigenetics. 2022:1–15. doi:10.1080/15592294.2022.2145058
  • Li J, Xu Q, Huang ZJ, et al. CircRNAs: a new target for the diagnosis and treatment of digestive system neoplasms. Cell Death Dis. 2021;12(2):205. doi:10.1038/s41419-021-03495-0
  • Mo Z, Li R, Cao C, et al. Splicing factor SNRPA associated with microvascular invasion promotes hepatocellular carcinoma metastasis through activating NOTCH1/Snail pathway and is mediated by circSEC62/miR-625-5p axis. Environ Toxicol. 2023. doi:10.1002/tox.23745
  • Feng Y, Feng L, Yu D, et al. srGAP1 mediates the migration inhibition effect of Slit2-Robo1 in colorectal cancer. J Exp Clin Cancer Res. 2016;35(1):191. doi:10.1186/s13046-016-0469-x
  • Chang PH, Hwang-Verslues WW, Chang YC, et al. Activation of Robo1 signaling of breast cancer cells by Slit2 from stromal fibroblast restrains tumorigenesis via blocking PI3K/AKt/β-catenin pathway. Cancer Res. 2012;72(18):4652–4661. doi:10.1158/0008-5472.CAN-12-0877
  • Ito H, Funahashi S, Yamauchi N, et al. Identification of ROBO1 as a novel hepatocellular carcinoma antigen and a potential therapeutic and diagnostic target. Clin Cancer Res. 2006;12(11 Pt 1):3257–3264. doi:10.1158/1078-0432.CCR-05-2787
  • Wang Z, Yang L, Wu P, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022;21(1):29. doi:10.1186/s12943-022-01498-9
  • Zhang Y, Wang Y, Ji H, et al. The interplay between noncoding RNA and YAP/TAZ signaling in cancers: molecular functions and mechanisms. J Exp Clin Cancer Res. 2022;41(1):202. doi:10.1186/s13046-022-02403-4
  • Liu Y, Liu X, Lin C, et al. Noncoding RNAs regulate alternative splicing in cancer. J Exp Clin Cancer Res. 2021;40(1):11. doi:10.1186/s13046-020-01798-2
  • Li C, Zhao W, Pan X, et al. LncRNA KTN1-AS1 promotes the progression of non-small cell lung cancer via sponging of miR-130a-5p and activation of PDPK1. Oncogene. 2020;39(39):6157–6171. doi:10.1038/s41388-020-01427-4
  • Kohoutek J, Li Q, Blazek D, et al. Cyclin T2 is essential for mouse embryogenesis. Mol Cell Biol. 2009;29(12):3280–3285. doi:10.1128/MCB.00172-09
  • Ke S, Li RC, Lu J, et al. MicroRNA-192 regulates cell proliferation and cell cycle transition in acute myeloid leukemia via interaction with CCNT2. Int J Hematol. 2017;106(2):258–265. doi:10.1007/s12185-017-2232-2
  • Xin Y, Huang M, Guo WW, et al. Nano-based delivery of RNAi in cancer therapy. Mol Cancer. 2017;16(1):134. doi:10.1186/s12943-017-0683-y
  • Ye Z, Zhu Z, Xie J, et al. Hsa_circ_0000069 knockdown inhibits tumorigenesis and exosomes with downregulated hsa_circ_0000069 suppress malignant transformation via inhibition of STIL in pancreatic cancer. Int J Nanomed. 2020;15:9859–9873. doi:10.2147/IJN.S279258
  • El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–691. doi:10.1016/j.ijpharm.2017.06.052
  • Sousa AR, Oliveira AV, Oliveira MJ, et al. Nanotechnology-based siRNA delivery strategies for metastatic colorectal cancer therapy. Int J Pharm. 2019;568:118530. doi:10.1016/j.ijpharm.2019.118530
  • Kaul G, Amiji M. Long-circulating poly (ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res. 2002;19(7):1061–1067.
  • Rahman M, Almalki WH, Afzal O, et al. Cationic solid lipid nanoparticles of resveratrol for hepatocellular carcinoma treatment: systematic optimization, in vitro characterization and preclinical investigation. Int J Nanomedicine. 2020;15:9283–9299. doi:10.2147/IJN.S277545
  • Mao Y, Yan R, Li A, et al. Lentiviral vectors mediate long-term and high efficiency transgene expression in HEK 293T cells. Int J Med Sci. 2015;12(5):407–415. doi:10.7150/ijms.11270
  • Cohen-Sela E, Chorny M, Koroukhov N, et al. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release. 2009;133(2):90–95. doi:10.1016/j.jconrel.2008.09.073
  • Saw PE, Zhang A, Nie Y, et al. Tumor-associated fibronectin targeted liposomal nanoplatform for cyclophilin a siRNA delivery and targeted malignant glioblastoma therapy. Front Pharmacol. 2018;9:1194. doi:10.3389/fphar.2018.01194
  • Liu H, Yuan M, Liu Y, et al. Self-monitoring and self-delivery of self-assembled fluorescent nanoparticles in cancer therapy. Int J Nanomedicine. 2021;16:2487–2499. doi:10.2147/IJN.S294279
  • Wei W, Zhang X, Chen X, et al. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale. 2016;8(15):8118–8125. doi:10.1039/c5nr09167e
  • Zhao X, Cai Y, Xu J. Circular RNAs: biogenesis, mechanism, and function in human cancers. Int J Mol Sci. 2019;20:16. doi:10.3390/ijms20163926
  • Liu B, Li J, Cairns MJ. Identifying miRNAs, targets and functions. Brief Bioinform. 2014;15(1):1–19. doi:10.1093/bib/bbs075
  • Chen X, Zhang L, Song Q, et al. MicroRNA-216b regulates cell proliferation, invasion and cycle progression via interaction with cyclin T2 in gastric cancer. Anticancer Drugs. 2020;31(6):623–631. doi:10.1097/CAD.0000000000000915
  • Li L, He K, Chen S, et al. Circ_0001175 promotes hepatocellular carcinoma cell proliferation and metastasis by regulating miR-130a-5p. Onco Targets Ther. 2020;13:13315–13327. doi:10.2147/OTT.S262408
  • Motlaq VF, Knudsen KD, Nyström B. Effect of PEGylation on the stability of thermoresponsive nanogels. J Colloid Interface Sci. 2018;524:245–255. doi:10.1016/j.jcis.2018.04.024
  • Bai X, Zhao G, Chen Q, et al. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci Adv. 2022;8(25):eabn7162. doi:10.1126/sciadv.abn7162
  • Hao X, Zhang Y, Shi X, et al. CircPAK1 promotes the progression of hepatocellular carcinoma via modulation of YAP nucleus localization by interacting with 14-3-3ζ. J Exp Clin Cancer Res. 2022;41(1):281. doi:10.1186/s13046-022-02494-z
  • Li Y, Wu A, Chen L, et al. Hsa_circ_0000098 is a novel therapeutic target that promotes hepatocellular carcinoma development and resistance to doxorubicin. J Exp Clin Cancer Res. 2022;41(1):267. doi:10.1186/s13046-022-02482-3
  • Xu YP, Dong ZN, Wang SW, et al. CircHMGCS1-016 reshapes immune environment by sponging miR-1236-3p to regulate CD73 and GAL-8 expression in intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res. 2021;40(1):290. doi:10.1186/s13046-021-02095-2
  • Song LN, Qiao GL, Yu J, et al. Hsa_circ_0003998 promotes epithelial to mesenchymal transition of hepatocellular carcinoma by sponging miR-143-3p and PCBD1. J Exp Clin Cancer Res. 2020;39(1):114. doi:10.1186/s13046-020-01576-0
  • Zhao Z, Song J, Tang B, et al. CircSOD2 induced epigenetic alteration drives hepatocellular carcinoma progression through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 2020;39(1):259. doi:10.1186/s13046-020-01769-7
  • Liu Y, Song J, Zhang H, et al. EIF4A3-induced circTOLLIP promotes the progression of hepatocellular carcinoma via the miR-516a-5p/PBX3/EMT pathway. J Exp Clin Cancer Res. 2022;41(1):164. doi:10.1186/s13046-022-02378-2
  • Lv Q, Wang G, Zhang Y, et al. CircAGAP1 promotes tumor progression by sponging miR-15-5p in clear cell renal cell carcinoma. J Exp Clin Cancer Res. 2021;40(1):76. doi:10.1186/s13046-021-01864-3
  • Liao Z, Zhang H, Su C, et al. Long noncoding RNA SNHG14 promotes hepatocellular carcinoma progression by regulating miR-876-5p/SSR2 axis. J Exp Clin Cancer Res. 2021;40(1):36. doi:10.1186/s13046-021-01838-5
  • Huang Q, Zhang F, Fu H, et al. Epigenetic regulation of miR-518a-5p-CCR6 feedback loop promotes both proliferation and invasion in diffuse large B cell lymphoma. Epigenetics. 2021;16(1):28–44. doi:10.1080/15592294.2020.1786317
  • Nair PS, Raijas P, Ahvenainen M, et al. Music-listening regulates human microRNA expression. Epigenetics. 2021;16(5):554–566. doi:10.1080/15592294.2020.1809853
  • Pan X, Zhu Q, Sun Y, et al. PLGA/poloxamer nanoparticles loaded with EPAS1 siRNA for the treatment of pancreatic cancer in vitro and in vivo. Int J Mol Med. 2015;35(4):995–1002. doi:10.3892/ijmm.2015.2096
  • Lam JK, Chow MY, Zhang Y, et al. siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids. 2015;4(9):e252. doi:10.1038/mtna.2015.23
  • Ahmadian E, Janas D, Eftekhari A, et al. Application of carbon nanotubes in sensing/monitoring of pancreas and liver cancer. Chemosphere. 2022;302:134826. doi:10.1016/j.chemosphere.2022.134826
  • Ahmadian E, Khosroushahi AY, Eftekhari A, et al. Novel angiotensin receptor blocker, azilsartan induces oxidative stress and NFKB-mediated apoptosis in hepatocellular carcinoma cell line HepG2. Biomed Pharmacother. 2018;99:939–946. doi:10.1016/j.biopha.2018.01.117
  • Ahmadian E, Babaei H, Mohajjel NA, et al. Venlafaxine-induced cytotoxicity towards isolated rat hepatocytes involves oxidative stress and mitochondrial/lysosomal dysfunction. Adv Pharm Bull. 2016;6(4):521–530. doi:10.15171/apb.2016.066