631
Views
7
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Physicochemical and Biopharmaceutical Controllability of New Self-Assembled Fatty Acid Conjugated Leuprolide for the Enhanced Anticancer Activity

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2325-2344 | Received 11 Dec 2022, Accepted 11 Apr 2023, Published online: 04 May 2023

References

  • Greenlee RT, Hill‐Harmon MB, Murray T, Thun M. Cancer statistics, 2001. CA Cancer J Clin. 2001;51(1):15–36. doi:10.3322/canjclin.51.1.15
  • Litwin MS, Tan H-J. The diagnosis and treatment of prostate cancer: a review. JAMA. 2017;317(24):2532–2542. doi:10.1001/jama.2017.7248
  • Sumanasuriya S, De Bono J. Treatment of advanced prostate cancer—A review of current therapies and future promise. Cold Spring Harb Perspect Med. 2018;8(6):a030635. doi:10.1101/cshperspect.a030635
  • Raghavan D. First-line use of novel hormonal agents in prostate cancer: a critical appraisal. Clin Adv Hematol Oncol. 2018;16(4):289–295.
  • Ceresoli G, De Vincenzo F, Sauta M, Bonomi M, Zucali P. Role of chemotherapy in combination with hormonal therapy in first-line treatment of metastatic hormone-sensitive prostate cancer. Q J Nucl Med Mol Imaging. 2015;59(4):374–380.
  • Wilson AC, Vadakkadath Meethal S, Bowen RL, Atwood CS. Leuprolide acetate: a drug of diverse clinical applications. Expert Opin Investig Drugs. 2007;16(11):1851–1863. doi:10.1517/13543784.16.11.1851
  • Wu C, Luo X, Baldursdottir SG, Yang M, Sun X, Mu H. In vivo evaluation of solid lipid microparticles and hybrid polymer-lipid microparticles for sustained delivery of leuprolide. Eur J Pharm Biopharm. 2019;142:315–321. doi:10.1016/j.ejpb.2019.07.010
  • Kim Y-C, Min KA, Jang D-J, et al. Practical approaches on the long-acting injections. J Pharm Investig. 2020;50(2):147–157. doi:10.1007/s40005-019-00452-0
  • Satapathy SR, Sahoo RN, Satapathy B, Immani R, Panigrahi L, Mallick S. Development and characterization of leuprolide acetate encapsulated PLGA microspheres for parenteral controlled release depot injection. Indian J Pharm Educ Res. 2021;55:107–116. doi:10.5530/ijper.55.1.14
  • Enayati M, Mobedi H, Hojjati‐Emami S, Mirzadeh H, Jafari‐Nodoushan M. In situ forming PLGA implant for 90 days controlled release of leuprolide acetate for treatment of prostate cancer. Polym Adv Technol. 2017;28(7):867–875. doi:10.1002/pat.3991
  • Bhatia S. leuprolide injection: implications for monitoring therapy. Pediatrics Electronic Pages [serial online] 109. Inpharma. 2002;1329:16.
  • Montagnani Marelli M, Moretti RM, Mai S, Procacci P, Limonta P. Gonadotropin-releasing hormone agonists reduce the migratory and the invasive behavior of androgen-independent prostate cancer cells by interfering with the activity of IGF-I. Int J Oncol. 2007;30(1):261–271.
  • Dondi D, Limonta P, Moretti RM, Marelli MM, Garattini E, Motta M. Antiproliferative effects of luteinizing hormone-releasing hormone (LHRH) agonists on human androgen-independent prostate cancer cell line DU 145: evidence for an autocrine-inhibitory LHRH loop. Cancer Res. 1994;54(15):4091–4095.
  • Loop SM, Gorder CA, Lewis SM, Saiers JH, Drivdahl RH, Ostenson RC. Growth inhibition of human prostate tumor cells by an agonist of gonadotrophin‐releasing hormone. Prostate. 1995;26(4):179–188. doi:10.1002/pros.2990260403
  • Connor JP, Buller RE, Conn PM. Effects of GnRH analogs on six ovarian cancer cell lines in culture. Gynecol Oncol. 1994;54(1):80–86. doi:10.1006/gyno.1994.1170
  • Kowalczyk R, Harris PW, Williams GM, Yang S-H, Brimble MA. Peptide lipidation–a synthetic strategy to afford peptide based therapeutics. Peptides Peptide Based Biomater Biomed Appli. 2017;2017:185–227.
  • Hutchinson JA, Burholt S, Hamley IW, et al. The effect of lipidation on the self-assembly of the gut-derived peptide hormone PYY3–36. Bioconjug Chem. 2018;29(7):2296–2308. doi:10.1021/acs.bioconjchem.8b00286
  • Meghani NM, Amin HH, Tran TT, Tran PH, Park C, Lee B-J. Modulation of serum albumin protein Corona for exploring cellular behaviors of fattigation-platform nanoparticles. Colloids Surf B Biointerfaces. 2018;170:179–186. doi:10.1016/j.colsurfb.2018.05.060
  • Park J, Ngo HV, Jin H-E, Lee KW, Lee B-J. Hydroxyl group-targeted conjugate and its self-assembled nanoparticle of peptide drug: effect of degree of saturation of fatty acids and modification of physicochemical properties. Int J Nanomedicine. 2022;17:2243. doi:10.2147/IJN.S356804
  • Park C, Meghani N, Amin H, et al. The roles of short and long chain fatty acids on physicochemical properties and improved cancer targeting of albumin-based fattigation-platform nanoparticles containing doxorubicin. Int J Pharm. 2019;564:124–135. doi:10.1016/j.ijpharm.2019.04.038
  • Park C, Meghani N, Loebenberg R, Cui J-H, Cao Q-R, Lee B-J. Fatty acid chain length impacts nanonizing capacity of albumin-fatty acid nanomicelles: enhanced physicochemical property and cellular delivery of poorly water-soluble drug. Eur J Pharm Biopharm. 2020;152:257–269. doi:10.1016/j.ejpb.2020.05.011
  • Park C, Baek N, Loebenberg R, Lee B-J. Importance of the fatty acid chain length on in vitro and in vivo anticancer activity of fattigation-platform albumin nanoparticles in human colorectal cancer xenograft mice model. J Control Release. 2020;324:55–68. doi:10.1016/j.jconrel.2020.05.001
  • Chrzanowska A, Olejarz W, Kubiak-Tomaszewska G, Ciechanowicz AK, Struga M. The effect of fatty acids on ciprofloxacin cytotoxic activity in prostate cancer cell lines—does lipid component enhance anticancer ciprofloxacin potential? Cancers. 2022;14(2):409. doi:10.3390/cancers14020409
  • Zhao J, Zhi Z, Wang C, et al. Exogenous lipids promote the growth of breast cancer cells via CD36. Oncol Rep. 2017;38(4):2105–2115. doi:10.3892/or.2017.5864
  • Fu M, Zhuang X, Zhang T, Guan Y, Meng Q, Zhang Y. PEGylated leuprolide with improved pharmacokinetic properties. Bioorg Med Chem. 2020;28(4):115306. doi:10.1016/j.bmc.2020.115306
  • Grundler V, Gademann K. Direct arginine modification in native peptides and application to chemical probe development. ACS Med Chem Lett. 2014;5(12):1290–1295. doi:10.1021/ml5003508
  • Van Ngo H, Park C, Tran TT, Lee B-J. Mechanistic understanding of salt-induced drug encapsulation in nanosuspension via acid-base neutralization as a nanonization platform technology to enhance dissolution rate of pH-dependent poorly water-soluble drugs. Eur J Pharm Biopharm. 2020;154:8–17. doi:10.1016/j.ejpb.2020.07.001
  • Pappa EV, Zompra AA, Spyranti Z, et al. Enzymatic stability, solution structure, and antiproliferative effect on prostate cancer cells of leuprolide and new gonadotropin‐releasing hormone peptide analogs. Peptide Sci. 2011;96(3):260–272. doi:10.1002/bip.21521
  • Samoto M, Matsuyama H, Matsumoto H, et al. Novel bone microenvironment model of castration‑resistant prostate cancer with chitosan fiber matrix and osteoblasts. Oncol Lett. 2021;22(4):1–11. doi:10.3892/ol.2021.12950
  • Park C, Vo CL-N, Kang T, Oh E, Lee B-J. New method and characterization of self-assembled gelatin–oleic nanoparticles using a desolvation method via carbodiimide/N-hydroxysuccinimide (EDC/NHS) reaction. Eur J Pharm Biopharm. 2015;89:365–373. doi:10.1016/j.ejpb.2014.12.002
  • Tran PH-L, Tran TT-D, Vo TV, Vo CL-N, Lee B-J. Novel multifunctional biocompatible gelatin-oleic acid conjugate: self-assembled nanoparticles for drug delivery. J Biomed Nanotechnol. 2013;9(8):1416–1431. doi:10.1166/jbn.2013.1621
  • Boyer C, Liu J, Wong L, Tippett M, Bulmus V, Davis TP. Stability and utility of pyridyl disulfide functionality in RAFT and conventional radical polymerizations. J Polym Sci a Polym Chem. 2008;46(21):7207–7224. doi:10.1002/pola.23028
  • Fu M, Zhuang X, Zhang T, Guan Y, Meng Q, Zhang Y. Hydrogen‐bonded films for zero‐order release of leuprolide. Macromol Biosci. 2020;20(9):2000050. doi:10.1002/mabi.202000050
  • Ma L, Huang S, Xie H, et al. Influence of chain length on the anticancer activity of the antimicrobial peptide CAMEL with fatty acid modification. Eur J Med Chem. 2022;239:114557. doi:10.1016/j.ejmech.2022.114557
  • Yang Y, Zhang H, Wanyan Y, et al. Effect of hydrophobicity on the anticancer activity of fatty-acyl-conjugated CM4 in breast cancer cells. ACS omega. 2020;5(34):21513–21523. doi:10.1021/acsomega.0c02093
  • Pekker M, Shneider M. Interaction between electrolyte ions and the surface of a cell lipid membrane. J Phys Chem Biophys. 2015;5(2):2161–2398.
  • Forest V, Pourchez J. Preferential binding of positive nanoparticles on cell membranes is due to electrostatic interactions: a too simplistic explanation that does not take into account the nanoparticle protein Corona. Mater Sci Eng C. 2017;70:889–896. doi:10.1016/j.msec.2016.09.016
  • Alves AC, Ramos II, Nunes C, et al. On-line automated evaluation of lipid nanoparticles transdermal permeation using Franz diffusion cell and low-pressure chromatography. Talanta. 2016;146:369–374. doi:10.1016/j.talanta.2015.08.070
  • Chede LS, Wagner BA, Buettner GR, Donovan MD. Electron spin resonance evaluation of buccal membrane fluidity alterations by sodium caprylate and L-menthol. Int J Mol Sci. 2021;22(19):10708. doi:10.3390/ijms221910708
  • Wu J. The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med. 2021;11(8):771. doi:10.3390/jpm11080771
  • Watt MJ, Clark AK, Selth LA, et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med. 2019;11(478):eaau5758. doi:10.1126/scitranslmed.aau5758
  • Liu Z, Hopkins MM, Zhang Z, et al. Omega-3 fatty acids and other FFA4 agonists inhibit growth factor signaling in human prostate cancer cells. J Pharmacol Exp Ther. 2015;352(2):380–394. doi:10.1124/jpet.114.218974
  • Yoo HS, Choi HK, Park TG. Protein–fatty acid complex for enhanced loading and stability within biodegradable nanoparticles. J Pharm Sci. 2001;90(2):194–201. doi:10.1002/1520-6017(200102)90:2<194::AID-JPS10>3.0.CO;2-Q
  • Vanacker N, Blouin R, Ster C, Lacasse P. Effect of different fatty acids on the proliferation and cytokine production of dairy cow peripheral blood mononuclear cells. J Dairy Sci. 2022;105(4):3508–3517. doi:10.3168/jds.2021-21296
  • Kimlin LC, Casagrande G, Virador VM. In vitro three‐dimensional (3D) models in cancer research: an update. Mol Carcinog. 2013;52(3):167–182. doi:10.1002/mc.21844
  • Berens EB, Holy JM, Riegel AT, Wellstein A. A cancer cell spheroid assay to assess invasion in a 3D setting. JoVE. 2015;105:e53409.