681
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Identification and Biological Evaluation of a Water-Soluble Fullerene Nanomaterial as BTK Kinase Inhibitor

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1709-1724 | Received 11 Jan 2023, Accepted 14 Mar 2023, Published online: 31 Mar 2023

References

  • Steve FA, Acquah AVP, Markelov DA, Semisalov AS, Leonhardt BE, Magi JM. The beautiful molecule: 30 years of C60 and its derivatives. ECS J Solid State Sci Technol. 2017;6(6):M3155–M3162. doi:10.1149/2.0271706jss
  • Sijbesma R, Srdanov G, Wudl F, et al. Synthesis of a fullerene derivative for the inhibition of HIV enzymes. J Am Chem Soc. 1993;115(15):6510–6512. doi:10.1021/ja00068a006
  • Nakamura E, Isobe H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc Chem Res. 2003;36(11):807–815. doi:10.1021/ar030027y
  • Rašović I. Water-soluble fullerenes for medical applications. Mater Sci Technol. 2017;33(7):777–794. doi:10.1080/02670836.2016.1198114
  • Hirsch A, Lamparth I, Grösser T, Karfunkel HR. Regiochemistry of multiple additions to the fullerene core: synthesis of a Th-symmetric hexakis adduct of C60 with bis (ethoxycarbonyl) methylene. J Am Chem Soc. 1994;116(20):9385–9386. doi:10.1021/ja00099a088
  • Muñoz A, Sigwalt D, Illescas BM, et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat Chem. 2015;8:50. doi:10.1038/nchem.2387
  • Dhiman S, Kaur A, Sharma M. Fullerenes for anticancer drug targeting: teaching an old dog a new trick. Mini Rev Med Chem. 2022;22(22):2864–2880. doi:10.2174/1389557522666220317145544
  • Kazemzadeh H, Mozafari M. Fullerene-based delivery systems. Drug Discov Today. 2019;24(3):898–905. doi:10.1016/j.drudis.2019.01.013
  • Ge C, Du J, Zhao L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A. 2011;108(41):16968–16973. doi:10.1073/pnas.1105270108
  • Pinals RL, Yang D, Rosenberg DJ, et al. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments. Angew Chem Int Ed. 2020;59(52):23668–23677. doi:10.1002/anie.202008175
  • Belgorodsky B, Fadeev L, Ittah V, et al. Formation and characterization of stable human serum albumin− tris-malonic acid [C60] fullerene complex. Bioconjug Chem. 2005;16(5):1058–1062.
  • Calvaresi M, Zerbetto F. Baiting proteins with C60. ACS Nano. 2010;4(4):2283–2299. doi:10.1021/nn901809b
  • Di Giosia M, Soldà A, Seeger M, et al. A bio‐conjugated fullerene as a subcellular‐targeted and multifaceted phototheranostic agent. Adv Funct Mater. 2021;31(20):2101527. doi:10.1002/adfm.202101527
  • Burger JA. BTK inhibitors: present and future. Cancer J. 2019;25(6):386.
  • Liang C, Tian D, Ren X, et al. The development of Bruton’s Tyrosine Kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem. 2018;151:315–326.
  • Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, Grande E. Bruton’s Tyrosine Kinase (BTK) as a promising target in solid tumors. Cancer Treat Rev. 2017;58:41–50. doi:10.1016/j.ctrv.2017.06.001
  • Lin L, Czerwinski R, Kelleher K, et al. Activation loop phosphorylation modulates Bruton’s Tyrosine Kinase (Btk) kinase domain activity. Biochemistry. 2009;48(9):2021–2032. doi:10.1021/bi8019756
  • Di Paolo JA, Huang T, Balazs M, et al. Specific Btk inhibition suppresses B cell–and myeloid cell–mediated arthritis. Nat Chem Biol. 2011;7(1):41–50. doi:10.1038/nchembio.481
  • Serda M, Malarz K, Mrozek-Wilczkiewicz A, Wojtyniak M, Musioł R, Curley SA. Glycofullerenes as non-receptor tyrosine kinase inhibitors-towards better nanotherapeutics for pancreatic cancer treatment. Sci Rep. 2020;10(1):1–11. doi:10.1038/s41598-019-57155-7
  • Wu J-C, Wang D-X, Huang Z-T, Wang M-X. Synthesis of diverse N, O-bridged calix [1] arene [4] pyridine-C60 dyads and triads and formation of intramolecular self-inclusion complexes. J Org Chem. 2010;75(24):8604–8614. doi:10.1021/jo1019267
  • Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. Ff14SB: improving the accuracy of protein side chain and backbone parameters from Ff99SB. J Chem Theory Comput. 2015;11(8):3696–3713. doi:10.1021/acs.jctc.5b00255
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(suppl_2):W363–W367. doi:10.1093/nar/gki481
  • Miller BR, McGee TD, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA. py: an efficient program for end-state free energy calculations. J Chem Theory Comput. 2012;8(9):3314–3321. doi:10.1021/ct300418h
  • Serda M, Ware MJ, Newton JM, et al. Development of photoactive sweet-C60 for pancreatic cancer stellate cell therapy. Nanomedicine. 2018;13(23):2981–2993. doi:10.2217/nnm-2018-0239
  • Watts JF. High resolution XPS of organic polymers: the scienta ESCA 300 database. Surf Interface Anal. 1993;20(3):267. doi:10.1002/sia.740200310
  • Yu J, Guan M, Li F, et al. Effects of fullerene derivatives on bioluminescence and application for protease detection. Chem Comm. 2012;48(89):11011–11013. doi:10.1039/C2CC36099C
  • Chen X, Wang X, Fang D, Review A. On C1s XPS-spectra for some kinds of carbon materials. Fuller Nanotub Carbon Nanostructures. 2020;28(12):1048–1058. doi:10.1080/1536383X.2020.1794851
  • Korzuch J, Rak M, Balin K, et al. Towards water-soluble [60] fullerenes for the delivery of SiRNA in a prostate cancer model. Sci Rep. 2021;11(1):1–10. doi:10.1038/s41598-021-89943-5
  • Yang D, Velamakanni A, Bozoklu G, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-raman spectroscopy. Carbon. 2009;47(1):145–152. doi:10.1016/j.carbon.2008.09.045
  • Gladys M, El Zein A, Mikkelsen A, Andersen JN, Held G. Chemical composition and reactivity of water on clean and oxygen-covered Pd surface science. Surf Sci. 2008;602(22):3540–3549.
  • Wu LJ, Fu FQ, Wang WH, et al. Plasma protein corona forming upon fullerene nanocomplex: impact on both counterparts. Particuology. 2023;73:26–36. doi:10.1016/j.partic.2022.04.0061674-2001
  • Malarz K, Mularski J, Pacholczyk M, Musiol R. The landscape of the anti-kinase activity of the IDH1 inhibitors. Cancers. 2020;12(3):536. doi:10.3390/cancers12030536
  • Chu Y, Lee S, Shah T, et al. Ibrutinib significantly inhibited Bruton’s Tyrosine Kinase (BTK) phosphorylation, in-vitro proliferation and enhanced overall survival in a preclinical Burkitt Lymphoma (BL) model. Oncoimmunology. 2019;8(1):e1512455. doi:10.1080/2162402X.2018.1512455
  • Ge Y, Wang C, Song S, et al. identification of highly potent BTK and JAK3 dual inhibitors with improved activity for the treatment of B-cell lymphoma. Eur J Med Chem. 2018;143:1847–1857. doi:10.1016/j.ejmech.2017.10.080
  • Li J, Yuan J. Caspases in apoptosis and beyond. Oncogene. 2008;27(48):6194–6206. doi:10.1038/onc.2008.297
  • Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH. Bruton’s tyrosine kinase links the B cell receptor to nuclear factor κB activation. J Exp Med. 2000;191(10):1735–1744. doi:10.1084/jem.191.10.1735
  • Pal Singh S, Dammeijer F, Hendriks RW. Role of bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):1–23. doi:10.1186/s12943-017-0753-1
  • Tomlinson MG, Woods DB, McMahon M, et al. A conditional form of bruton’s tyrosine kinase is sufficient to activate multiple downstream signaling pathways via PLC gamma 2 in B cells. BMC Immunol. 2001;2(1):1–12. doi:10.1186/1471-2172-2-4
  • Hendriks RW, Yuvaraj S, Kil LP. Targeting bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer. 2014;14(4):219–232. doi:10.1038/nrc3702
  • Antony P, Petro JB, Carlesso G, et al. Directs the activation of NFAT and NF-κB via distinct molecular mechanisms. Exp Cell Res. 2003;291(1):11–24. doi:10.1016/S0014-4827(03)00338-0
  • Hayakawa K, Li Y-S, Shinton SA, et al. Crucial role of increased Arid3a at the pre-B and immature B cell stages for B1a cell generation. Front Immunol. 2019;10:457. doi:10.3389/fimmu.2019.00457
  • Moyo TK, Wilson CS, Moore DJ, Eischen CM, Enhances M. B-cell receptor signaling in precancerous B cells and confers resistance to Btk inhibition. Oncogene. 2017;36(32):4653–4661. doi:10.1038/onc.2017.95