354
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Encapsulated Oxovanadium(IV) and Dioxovanadium(V) Complexes into Solid Lipid Nanoparticles Increase Cytotoxicity Against MDA-MB-231 Cell Line

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2507-2523 | Received 18 Jan 2023, Accepted 14 Apr 2023, Published online: 11 May 2023

References

  • Carbone C, Arena E, Pepe V, et al. Nanoencapsulation strategies for the delivery of novel bifunctional antioxidant/σ1 selective ligands. Colloids Surf B Biointerfaces. 2017;155:238–247. doi:10.1016/J.COLSURFB.2017.04.016
  • Souto EB, Müller RH. Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb Exp Pharmacol. 2010;197(197):115–141. doi:10.1007/978-3-642-00477-3_4
  • García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials. 2019;9:4. doi:10.3390/NANO9040638
  • Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv. 2005;12(6):385–392. doi:10.1080/10717540590968855
  • Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Front Mol Biosci. 2020;7:319. doi:10.3389/FMOLB.2020.587997/BIBTEX
  • den Hertog J, Groen A, van der Wijk T. Redox regulation of protein-tyrosine phosphatases. Arch Biochem Biophys. 2005;434(1SPEC):11–15. doi:10.1016/j.abb.2004.05.024
  • Elson A. Stepping out of the shadows: oncogenic and tumor-promoting protein tyrosine phosphatases. Int J Biochem Cell Biol. 2018;96:135–147. doi:10.1016/J.BIOCEL.2017.09.013
  • Chen PJ, Zhang YT. Protein tyrosine phosphatase 1B (PTP1B): insights into its new implications in tumorigenesis. Curr Cancer Drug Targets. 2022;22(3):181–194. doi:10.2174/1568009622666220128113400
  • Julien SG, Dubé N, Read M, et al. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat Genet. 2007;39(3):338–346. doi:10.1038/ng1963
  • Evangelou AM. Vanadium in cancer treatment. Crit Rev Oncol Hematol. 2002;42(3):249–265. doi:10.1016/S1040-8428(01)00221-9
  • Galic S, Hauser C, Kahn BB, et al. Coordinated regulation of insulin signaling by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol. 2005;25(2):819. doi:10.1128/MCB.25.2.819-829.2005
  • Tsiani E, Fantus IG. Vanadium compounds: biological actions and potential as pharmacological agents. Trends Endocrinol Metabol. 1997;8(2):51–58. doi:10.1016/S1043-2760(96)00262-7
  • Shaik A, Kondaparthy V, Aveli R, Vijjulatha M, Sree Kanth S, Das Manwal D. Interaction of vanadium metal complexes with protein tyrosine phosphatase-1B enzyme along with identification of active site of enzyme by molecular modeling. Inorg Chem Commun. 2021;126:108499. doi:10.1016/J.INOCHE.2021.108499
  • Koren S, Fantus IG. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best Pract Res Clin Endocrinol Metab. 2007;21(4):621–640. doi:10.1016/J.BEEM.2007.08.004
  • Irving E, Stoker AW. Vanadium Compounds as PTP Inhibitors. Molecules. 2017;22:12. doi:10.3390/MOLECULES22122269
  • Hendriks WJAJ, Elson A, Harroch S, Stoker AW. Protein tyrosine phosphatases: functional inferences from mouse models and human diseases. FEBS J. 2008;275(5):816–830. doi:10.1111/j.1742-4658.2008.06249.x
  • Östman A, Hellberg C, Böhmer FD. Protein-tyrosine phosphatases and cancer. Nat Rev Cancer. 2006;6(4):307–320. doi:10.1038/nrc1837
  • Liu X, Chen Q, Hu XG, et al. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT. Tumour Biol. 2016;37(10):13479–13487. doi:10.1007/S13277-016-5245-1
  • Zheng LY, Zhou DX, Lu J, Zhang WJ, Zou DJ. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma. Biochem Biophys Res Commun. 2012;420(3):680–684. doi:10.1016/J.BBRC.2012.03.066
  • Treviño S, Díaz A, Sánchez-Lara E, Sanchez-Gaytan BL, Perez-Aguilar JM, González-Vergara E. Vanadium in biological action: chemical, pharmacological aspects, and metabolic implications in diabetes mellitus. Biol Trace Elem Res. 2018;188(1):68–98. doi:10.1007/S12011-018-1540-6
  • Musielak E, Feliczak-Guzik A, Nowak I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials. 2022;15:682. doi:10.3390/MA15020682
  • Nassimi M, Schleh C, Lauenstein HD, et al. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal Toxicol. 2009;21(SUPPL.1):104–109. doi:10.1080/08958370903005769
  • Serpe L, Catalano MG, Cavalli R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm. 2004;58(3):673–680. doi:10.1016/J.EJPB.2004.03.026
  • Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491–504. doi:10.1016/J.ADDR.2007.04.008
  • Bayón-Cordero L, Alkorta I, Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials. 2019;9(3):474. doi:10.3390/NANO9030474
  • Oliveira MS, Aryasomayajula B, Pattni B, Mussi SV, Ferreira LAM, Torchilin VP. Solid lipid nanoparticles co-loaded with doxorubicin and α-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm. 2016;512(1):292–300. doi:10.1016/J.IJPHARM.2016.08.049
  • Al-Jubori AA, Sulaiman GM, Tawfeeq AT, Mohammed HA, Khan RA, Mohammed SAA. Layer-by-layer nanoparticles of tamoxifen and resveratrol for dual drug delivery system and potential triple-negative breast cancer treatment. Pharmaceutics. 2021;13(7):1098. doi:10.3390/PHARMACEUTICS13071098/S1
  • Cacicedo ML, Ruiz MC, Scioli-Montoto S, et al. Lipid nanoparticles – metvan: revealing a novel way to deliver a vanadium compound to bone cancer cells. New J Chem. 2019;43(45):17726–17734. doi:10.1039/C9NJ01634A
  • Satapathy S, Patro CS. Solid lipid nanoparticles for efficient oral delivery of tyrosine kinase inhibitors: a nano targeted cancer drug delivery. Adv Pharm Bull. 2022;12(2):298–308. doi:10.34172/apb.2022.041
  • Kostrzewa T, Jończyk J, Drzeżdżon J, et al. Synthesis, in vitro, and computational studies of ptp1b phosphatase inhibitors based on oxovanadium(IV) and dioxovanadium(V) complexes. Int J Mol Sci. 2022;23:13. doi:10.3390/IJMS23137034
  • Drzeżdżon J, Pawlak M, Gawdzik B, et al. Dipicolinate complexes of oxovanadium(IV) and dioxovanadium(V) with 2-phenylpyridine and 4,4′-dimethoxy-2,2′-bipyridyl as new precatalysts for olefin oligomerization. Materials. 2022;15(4):1379. doi:10.3390/MA15041379/S1
  • Drzeżdżon J, Pawlak M, Matyka N, Sikorski A, Gawdzik B, Jacewicz D. Relationship between antioxidant activity and ligand basicity in the dipicolinate series of oxovanadium(Iv) and dioxovanadium(v) complexes. Int J Mol Sci. 2021;22(18):9886. doi:10.3390/IJMS22189886/S1
  • Kostrzewa T, Przychodzen P, Gorska-Ponikowska M, Kuban-Jankowska A. Curcumin and cinnamaldehyde as PTP1B inhibitors with antidiabetic and anticancer potential. Anticancer Res. 2019;39(2):745–749. doi:10.21873/ANTICANRES.13171
  • Kostrzewa T, Sahu KK, Gorska-Ponikowska M, Tuszynski JA, Kuban-Jankowska A. Synthesis of small peptide compounds, molecular docking, and inhibitory activity evaluation against phosphatases PTP1B and SHP2. Drug Des Devel Ther. 2018;12:4139–4147. doi:10.2147/DDDT.S186614
  • Kuban-Jankowska A, Gorska-Ponikowska M, Sahu KK, Kostrzewa T, Wozniak M, Tuszynski J. Docosahexaenoic acid inhibits PTP1B phosphatase and the viability of MCF-7 breast cancer cells. Nutrients. 2019;11:11. doi:10.3390/nu11112554
  • Kuban-Jankowska A, Kostrzewa T, Musial C, et al. Green tea catechins induce inhibition of PTP1B phosphatase in breast cancer cells with potent anti-cancer properties: in vitro assay, molecular docking, and dynamics studies. Antioxidants. 2020;9(12):1208. doi:10.3390/ANTIOX9121208
  • Kostrzewa T, Wołosewicz K, Jamrozik M, et al. Curcumin and its new derivatives: correlation between cyto-toxicity against breast cancer cell lines, degradation of ptp1b phosphatase and ros generation. Int J Mol Sci. 2021;22(19):10368. doi:10.3390/IJMS221910368/S1
  • Okada T, Chino Y, Yokoyama K, et al. Design and synthesis of novel pipernonaline derivatives as anti-austerity agents against human pancreatic cancer PANC-1 cells. Bioorg Med Chem. 2022;71:116963. doi:10.1016/J.BMC.2022.116963
  • ’Thijssen – van Loosdregt I, Regnard G, Frankfort M, Koedood N. Collective cell migration assays; 2021.
  • Doktorovova S, Souto EB. Nanostructured lipid carrier-based hydrogel formulations for drug delivery: a comprehensive review. Expert Opin Drug Deliv. 2009;6(2):165–176. doi:10.1517/17425240802712590
  • Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces. 2017;154:123–132. doi:10.1016/J.COLSURFB.2017.03.021
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi:10.3390/PHARMACEUTICS10020057
  • Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007;24(2):203–227. doi:10.1007/S11095-006-9146-7
  • Abbas ZS, Sulaiman GM, Jabir MS, et al. Galangin/β-cyclodextrin inclusion complex as a drug-delivery system for improved solubility and biocompatibility in breast cancer treatment. Molecules. 2022;27(14):4521. doi:10.3390/MOLECULES27144521
  • Mazuryk J, Deptuła T, Polchi A, et al. Rapamycin-loaded solid lipid nanoparticles: morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surf a Physicochem Eng Asp. 2016;502:54–65. doi:10.1016/J.COLSURFA.2016.05.017
  • Kardas M, Grochowska NE. Differential Scanning Calorimetry as a thermoanalytical method used in pharmacy and food analysis. Bromat Chem Toksykol. 2009;2:224–230.
  • Tan CP, Che MY. Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition. J Am Oil Chem Soc. 2000;77:143–155. doi:10.1007/s11746-000-0024-6
  • Hou DZ, Xie CS, Huang KJ, Zhu CH. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials. 2003;24(10):1781–1785. doi:10.1016/S0142-9612(02)00578-1
  • Chasteen ND, Grady JK, Holloway CE. Characterization of the binding, kinetics, and redox stability of vanadium(IV) and vanadium(V) protein complexes in serum. Inorg Chem. 1986;25(16):2754–2760. doi:10.1021/IC00236A021/ASSET/IC00236A021.FP.PNG_V03
  • Pyrzyńska K, Wierzbicki T. Determination of vanadium species in environmental samples. Talanta. 2004;64(4):823–829. doi:10.1016/J.TALANTA.2004.05.007
  • Crans DC, Mahroof-Tahir M, Keramidas AD. Vanadium chemistry and biochemistry of relevance for use of vanadium compounds as antidiabetic agents. Vanadium Comp. 1995;17–24. doi:10.1007/978-1-4613-1251-2_2
  • Du Y, Ling L, Ismail M, et al. Redox sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. Int J Pharm. 2018;549(1–2):352–362. doi:10.1016/J.IJPHARM.2018.08.010
  • Mohammed HA, Sulaiman GM, Anwar SS, et al. Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine. 2021;16(22):1937–1961. doi:10.2217/NNM-2021-0070
  • Fangueiro JF, Andreani T, Fernandes L, et al. Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids Surf B Biointerfaces. 2014;123:452–460. doi:10.1016/J.COLSURFB.2014.09.042
  • Silva AM, Martins-Gomes C, Fangueiro JF, Andreani T, Souto EB. Comparison of antiproliferative effect of epigallocatechin gallate when loaded into cationic solid lipid nanoparticles against different cell lines. Pharm Dev Technol. 2019;24(10):1243–1249. doi:10.1080/10837450.2019.1658774
  • Alonso A, Sasin J, Bottini N, et al. Protein tyrosine phosphatases in the human genome. Cell. 2004;117(6):699–711. doi:10.1016/J.CELL.2004.05.018
  • Navis AC, van den Eijnden M, Schepens JTG, Hooft Van Huijsduijnen R, Wesseling P, Hendriks WJAJ. Protein tyrosine phosphatases in glioma biology. Acta Neuropathol. 2010;119(2):157–175. doi:10.1007/s00401-009-0614-0
  • Diluvio G, Del Gaudio F, Giuli MV, et al. NOTCH3 inactivation increases triple negative breast cancer sensitivity to gefitinib by promoting EGFR tyrosine dephosphorylation and its intracellular arrest. Oncogenesis. 2018;7:5. doi:10.1038/S41389-018-0051-9
  • Frangioni JV, Beahm PH, Shifrin V, Jost CA, Neel BG. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell. 1992;68(3):545–560. doi:10.1016/0092-8674(92)90190-N
  • Yu M, Liu Z, Liu Y, et al. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J. 2019;286(6):1136–1153. doi:10.1111/FEBS.14724
  • Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics. 2011;3(1):107–124. doi:10.3390/PHARMACEUTICS3010107
  • Hilmarsdottir B, Briem E, Halldorsson S, et al. Inhibition of PTP1B disrupts cell–cell adhesion and induces anoikis in breast epithelial cells. Cell Death Dis. 2017;8(5):e2769–e2769. doi:10.1038/cddis.2017.177
  • Moutasim KA, Nystrom ML, Thomas GJ. Cell migration and invasion assays. Methods Protoc. 2011;333–343. doi:10.1007/978-1-61779-080-5_27/COVER
  • Pijuan J, Barceló C, Moreno DF, et al. In vitro cell migration, invasion, and adhesion assays: from cell imaging to data analysis. Front Cell Dev Biol. 2019;7:107. doi:10.3389/FCELL.2019.00107/BIBTEX
  • Ferretti VA, León IE. An overview of vanadium and cell signaling in potential cancer treatments. Inorganics. 2022;10(4):47. doi:10.3390/INORGANICS10040047
  • Vincristine. Available from: https://www.breastcancer.org/drugs/vincristine. Accessed December 21, 2022.