405
Views
5
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

In vitro and in vivo Evaluation of Folic Acid Modified DOX-Loaded 32P-nHA Nanoparticles in Prostate Cancer Therapy

ORCID Icon, , , , , & ORCID Icon show all
Pages 2003-2015 | Received 06 Jan 2023, Accepted 24 Mar 2023, Published online: 13 Apr 2023

References

  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71:7–33. doi:10.3322/caac.21654
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–249. doi:10.3322/caac.21660
  • Merriel SWD, Funston G, Hamilton W. Prostate cancer in primary care. Adv Ther. 2018;35:1285–1294. doi:10.1007/s12325-018-0766-1
  • Omabe K, Paris C, Lannes F, et al. Nanovectorization of prostate cancer treatment strategies: a new approach to improved outcomes. Pharmaceutics. 2021;13:591. doi:10.3390/pharmaceutics13050591
  • Oves M, Aslam M, Rauf MA, et al. Antimicrobial and anticancer activities of silver nanoparticles synthesized from the root hair extract of Phoenix dactylifera. Mater Sci Eng C Mater Biol Appl. 2018;89:429–443. doi:10.1016/j.msec.2018.03.035
  • Shait Mohammed MR, Ahmad V, Ahmad A, et al. Prospective of nanoscale metal organic frameworks [NMOFs] for cancer therapy. Semin Cancer Biol. 2021;69:129–139. doi:10.1016/j.semcancer.2019.12.015
  • Rowe SP, Macura KJ, Ciarallo A, et al. Comparison of prostate-specific membrane antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naive and castration-resistant metastatic prostate cancer. J Nucl Med. 2016;57:46–53. doi:10.2967/jnumed.115.163782
  • Barrett JA, Coleman RE, Goldsmith SJ, et al. First-in-man evaluation of 2 high-affinity PSMA-avid small molecules for imaging prostate cancer. J Nucl Med. 2013;54:380–387. doi:10.2967/jnumed.112.111203
  • Dalla Volta A, Grisanti S, Berruti A. Lutetium-177-PSMA-617 for Prostate Cancer. N Engl J Med. 2021;385:2495. doi:10.1056/NEJMc2116647
  • Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91:528–539. doi:10.1002/jcb.10661
  • Jivrajani M, Nivsarkar M. Ligand-targeted bacterial minicells: futuristic nano-sized drug delivery system for the efficient and cost effective delivery of shRNA to cancer cells. Nanomedicine. 2016;12:2485–2498. doi:10.1016/j.nano.2016.06.004
  • Hattori Y, Maitani Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J Control Release. 2004;97:173–183. doi:10.1016/j.jconrel.2004.03.007
  • Guo J, O’Driscoll CM, Holmes JD, et al. Bioconjugated gold nanoparticles enhance cellular uptake: a proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm. 2016;509:16–27. doi:10.1016/j.ijpharm.2016.05.027
  • Selvarathinam T, Dhesingh RS. In-vitro evaluation of folic acid capped gold nanoformulations for drug delivery to prostate cancer. ChemistrySelect. 2022;7(16):e202200759. doi:10.1002/slct.202200759
  • Ooi CH, Ling YP, Abdullah WZ, et al. Physicochemical evaluation and in vitro hemocompatibility study on nanoporous hydroxyapatite. J Mater Sci Mater Med. 2019;30:44. doi:10.1007/s10856-019-6247-5
  • Qiu XT, Rao CY, Li T, et al. 骨组织工程中纳米羟基磷灰石的仿生合成研究进展 [Research progress in biomimetic synthesis of nano-hydroxyapatite in bone tissue engineering]. Sichuan Da Xue Xue Bao Yi Xue Ban. 2021;52:740–746. Chinese. doi:10.12182/20210560201
  • Ciftci Dede E, Korkusuz P, Bilgic E, et al. Boron nano-hydroxyapatite composite increases the bone regeneration of ovariectomized rabbit femurs. Biol Trace Elem Res. 2022;200:183–196. doi:10.1007/s12011-021-02626-0
  • Kubasiewicz-Ross P, Hadzik J, Seeliger J, et al. New nano-hydroxyapatite in bone defect regeneration: a histological study in rats. Ann Anat. 2017;213:83–90. doi:10.1016/j.aanat.2017.05.010
  • Abdul Halim NA, Hussein MZ, Kandar MK. Nanomaterials-upconverted hydroxyapatite for bone tissue engineering and a platform for drug delivery. Int J Nanomedicine. 2021;16:6477–6496. doi:10.2147/IJN.S298936
  • Munir MU, Salman S, Javed I, et al. Nano-hydroxyapatite as a delivery system: overview and advancements. Artif Cells Nanomed Biotechnol. 2021;49:717–727. doi:10.1080/21691401.2021.2016785
  • Kang NW, Lee JY, Kim DD. Hydroxyapatite-binding albumin nanoclusters for enhancing bone tumor chemotherapy. J Control Release. 2022;342:111–121. doi:10.1016/j.jconrel.2021.12.039
  • Huang SM, Liu SM, Ko CL, et al. Advances of Hydroxyapatite Hybrid Organic Composite Used as Drug or Protein Carriers for Biomedical Applications: a Review. Polymers. 2022;14. doi:10.3390/polym14050976
  • Dong X, Sun Y, Li Y, et al. Synergistic combination of bioactive hydroxyapatite nanoparticles and the chemotherapeutic doxorubicin to overcome tumor multidrug resistance. Small. 2021;17:e2007672. doi:10.1002/smll.202007672
  • Liu Y, Nadeem A, Sebastian S, et al. Bone mineral: a trojan horse for bone cancers. Efficient mitochondria targeted delivery and tumor eradication with nano hydroxyapatite containing doxorubicin. Mater Today Bio. 2022;14:100227. doi:10.1016/j.mtbio.2022.100227
  • Liu Y, Raina DB, Sebastian S, et al. Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomater. 2021;131:555–571. doi:10.1016/j.actbio.2021.07.016
  • Gest H. The early history of (32) P as a radioactive tracer in biochemical research: a personal memoir. Biochem Mol Biol Educ. 2005;33:159–164. doi:10.1002/bmb.2005.494033032427
  • Zhang WQ, Han SQ, Yuan Z, et al. Effects of intraarticular (32)P colloid in the treatment of hemophilic synovitis of the knee: a short term clinical study. Indian J Orthop. 2016;50:55–58. doi:10.4103/0019-5413.173507
  • Wu J, Huang J, Long F, et al. Monte Carlo dosimetric parameter study of a new 32 P brachytherapy source. Br J Radiol. 2016;89:20150783. doi:10.1259/bjr.20150783
  • Keyak JH, Eijansantos ML, Rosecrance KG, et al. A preliminary safety assessment of vertebral augmentation with 32 P brachytherapy bone cement. Phys Med Biol. 2022;67:075007. doi:10.1088/1361-6560/ac5e5d
  • Yang X, Zhai D, Song J, et al. Rhein-PEG-nHA conjugate as a bone targeted drug delivery vehicle for enhanced cancer chemoradiotherapy. Nanomedicine. 2020;27:102196.
  • Chattopadhyay S, Vimalnath KV, Saha S, et al. Preparation and evaluation of a new radiopharmaceutical for radiosynovectomy, 111Ag-labelled hydroxyapatite (HA) particles. Appl Radiat Isot. 2008;66:334–339. doi:10.1016/j.apradiso.2007.09.003
  • Shakeri-Zadeha A, Rezaeyanc A, Sarikhanie A, et al. Folate receptor-targeted nanoprobes for molecular imaging of cancer: friend or foe? Nano Today. 2021;39(2021):101173. doi:10.1016/j.nantod.2021.101173
  • Ding ZZ, Fan ZH, Huang XW, et al. Bioactive natural protein-hydroxyapatite nanocarriers for optimizing osteogenic differentiation of mesenchymal stem cells. J Mater Chem B. 2016;4:3555–3561. doi:10.1039/C6TB00509H
  • Solechan S, Suprihanto A, Widyanto SA, et al. Characterization of PLA/PCL/Nano-Hydroxyapatite (nHA) Biocomposites prepared via cold isostatic pressing. Polymers. 2023;15(3). doi:10.3390/polym15030559
  • Santra S, Kaittanis C, Santiesteban OJ, et al. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J Am Chem Soc. 2011;133:16680–16688. doi:10.1021/ja207463b
  • Patra A, Satpathy S, Naik PK, et al. Folate receptor-targeted PLGA-PEG nanoparticles for enhancing the activity of genistein in ovarian cancer. Artif Cells Nanomed Biotechnol. 2022;50:228–239. doi:10.1080/21691401.2022.2118758
  • Choi SK, Thomas T, Li MH, et al. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem Commun. 2010;46:2632–2634. doi:10.1039/b927215c
  • Yao V, Berkman CE, Choi JK, et al. Expression of prostate-specific membrane antigen (PSMA), increases cell folate uptake and proliferation and suggests a novel role for PSMA in the uptake of the non-polyglutamated folate, folic acid. Prostate. 2010;70:305–316. doi:10.1002/pros.21065
  • Davis MI, Bennett MJ, Thomas LM, et al. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc Natl Acad Sci U S A. 2005;102:5981–5986. doi:10.1073/pnas.0502101102
  • Leamon CP, Low PS. Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proc Natl Acad Sci U S A. 1991;88:5572–5576. doi:10.1073/pnas.88.13.5572
  • Henne WA, Doorneweerd DD, Hilgenbrink AR, et al. Synthesis and activity of a folate peptide camptothecin prodrug. Bioorg Med Chem Lett. 2006;16:5350–5355. doi:10.1016/j.bmcl.2006.07.076
  • El-Sayyad HI, Ismail MF, Shalaby FM, et al. Histopathological effects of cisplatin, doxorubicin and 5-flurouracil (5-FU) on the liver of male albino rats. Int J Biol Sci. 2009;5:466–473. doi:10.7150/ijbs.5.466
  • Daemen T, Hofstede G, Ten Kate MT, et al. Liposomal doxorubicin-induced toxicity: depletion and impairment of phagocytic activity of liver macrophages. Int J Cancer. 1995;61:716–721. doi:10.1002/ijc.2910610520
  • Maia AL, Cavalcante CH, Souza MG, et al. Hydroxyapatite nanoparticles: preparation, characterization, and evaluation of their potential use in bone targeting: an animal study. Nucl Med Commun. 2016;37:775–782. doi:10.1097/MNM.0000000000000510