266
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Novel Strategy Based on Zn(II) Porphyrins and Silver Nanoparticles to Photoinactivate Candida albicans

ORCID Icon, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3007-3020 | Received 11 Jan 2023, Accepted 06 May 2023, Published online: 07 Jun 2023

References

  • Souza THS, Andrade CG, Cabral FV, et al. Efficient photodynamic inactivation of Leishmania parasites mediated by lipophilic water-soluble Zn(II) porphyrin ZnTnHex-2-PyP4+. Biochim Biophys Acta. 2021;1865(7):129897. doi:10.1016/j.bbagen.2021.129897
  • Viana O, Ribeiro M, Rodas A, Rebouças J, Fontes A, Santos B. Comparative study on the efficiency of the photodynamic inactivation of Candida albicans using CdTe quantum Dots, Zn(II) porphyrin and their conjugates as photosensitizers. Molecules. 2015;20(5):8893–8912. doi:10.3390/molecules20058893
  • Souza SO, Raposo BL, Sarmento-Neto JF, et al. Photoinactivation of yeast and biofilm communities of Candida albicans mediated by ZnTnHex-2-PyP4+ porphyrin. J Fungi. 2022;8(6):556. doi:10.3390/jof8060556
  • Andrade CG, Figueiredo RCBQ, Ribeiro KRC, et al. Photodynamic effect of zinc porphyrin on the promastigote and amastigote forms of Leishmania braziliensis. Photochem Photobiol Sci. 2018;17(4):482–490. doi:10.1039/C7PP00458C
  • Dąbrowski JM, Pucelik B, Pereira MM, Arnaut LG, Stochel G. Towards tuning PDT relevant photosensitizer properties: comparative study for the free and Zn2+ coordinated meso-tetrakis[2,6-difluoro-5-(N-methylsulfamylo)phenyl]porphyrin. J Coord Chem. 2015;68(17–18):3116–3134. doi:10.1080/00958972.2015.1073723
  • Marydasan B, Nair AK, Ramaiah D. Optimization of triplet excited state and singlet oxygen quantum yields of picolylamine–porphyrin conjugates through zinc insertion. J Phys Chem B. 2013;117(43):13515–13522. doi:10.1021/jp407524w
  • Moghnie S, Tovmasyan A, Craik J, Batinic-Haberle I, Benov L. Cationic amphiphilic Zn-porphyrin with high antifungal photodynamic potency. Photochem Photobiol Sci. 2017;16(11):1709–1716. doi:10.1039/C7PP00143F
  • Mapukata S, Sen P, Osifeko OL, Nyokong T. The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles. Photodiagnosis Photodyn Ther. 2021;35:102361. doi:10.1016/j.pdpdt.2021.102361
  • Rodrigues CH, Araújo EAG, Almeida RP, et al. Silver nanoprisms as plasmonic enhancers applied in the photodynamic inactivation of Staphylococcus aureus isolated from bubaline mastitis. Photodiagnosis Photodyn Ther. 2021;34:102315. doi:10.1016/j.pdpdt.2021.102315
  • Rigotto Caruso G, Tonani L, Marcato PD, von Zeska Kress MR. Phenothiazinium photosensitizers associated with silver nanoparticles in enhancement of antimicrobial photodynamic therapy. Antibiotics. 2021;10(5):569. doi:10.3390/antibiotics10050569
  • Ocsoy I, Isiklan N, Cansiz S, Ozdemir N, Tan W. ICG-Conjugated magnetic graphene oxide for dual photothermal and photodynamic therapy. RSC Adv. 2016;6(36):30285–30292. doi:10.1039/C6RA06798K
  • Tada DB, Baptista MS. Photosensitizing nanoparticles and the modulation of ROS generation. Front Chem. 2015;3:1–14. doi:10.3389/fchem.2015.00033
  • Yougbaré S, Mutalik C, Okoro G, et al. Emerging trends in nanomaterials for antibacterial applications. Int J Nanomedicine. 2021;16:5831–5867. doi:10.2147/IJN.S328767
  • Some S, Sarkar B, Biswas K, et al. Bio-molecule functionalized rapid one-pot green synthesis of silver nanoparticles and their efficacy toward the multidrug resistant (MDR) gut bacteria of silkworms (Bombyx mori). RSC Adv. 2020;10(38). doi:10.1039/d0ra03451g
  • Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing - A review. Anal Chim Acta. 2011;706(1). doi:10.1016/j.aca.2011.08.020
  • Zhang J, Fu Y, Lakowicz JR. Enhanced Förster resonance energy transfer (FRET) on a single metal particle. J Phys Chem C. 2007;111(1). doi:10.1021/jp062665e
  • Javed R, Zia M, Naz S, Aisida SO. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: recent trends and future prospects. J Nanobiotechnology. 2020;18(1). doi:10.1186/s12951-020-00704-4
  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science. 2018;360(6390):739–742. doi:10.1126/science.aap7999
  • Bongomin F, Gago S, Oladele R, Denning D. Global and multi-national prevalence of fungal diseases - estimate precision. J Fungi. 2017;3(4):57. doi:10.3390/jof3040057
  • Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369(9577):1961–1971. doi:10.1016/S0140-6736(07)60917-9
  • Patil S, Rao RS, Majumdar B, Anil S. Clinical appearance of oral candida infection and therapeutic strategies. Front Microbiol. 2015;6:1391. doi:10.3389/fmicb.2015.01391
  • World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action; 2022: 48. Available from: https://www.who.int/publications/i/item/9789240060241. Accessed March 19, 2023.
  • Amirjani A, Koochak NN, Haghshenas DF. Investigating the shape and size-dependent optical properties of silver nanostructures using UV–vis spectroscopy. J Chem Educ. 2019;96(11):2584–2589. doi:10.1021/acs.jchemed.9b00559
  • Ezzeddine R, Al-Banaw A, Tovmasyan A, Craik JD, Batinic-Haberle I, Benov LT. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-Alkylpyridylporphyrins*. J Biol Chem. 2013;288(51):36579–36588. doi:10.1074/jbc.M113.511642
  • Odeh AM, Craik JD, Ezzeddine R, Tovmasyan A, Batinic-Haberle I, Benov LT. Targeting mitochondria by Zn(II) N-Alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy. PLoS One. 2014;9(9):e108238. doi:10.1371/journal.pone.0108238
  • Benov L, Batinić-Haberle I, Spasojević I, Fridovich I. Isomeric N-alkylpyridylporphyrins and their Zn(II) complexes: inactive as SOD mimics but powerful photosensitizers. Arch Biochem Biophys. 2002;402(2):159–165. doi:10.1016/S0003-9861(02)00062-0
  • Jett BD, Hatter KL, Huycke MM, Gilmore MS. Simplified agar plate method for quantifying viable bacteria. Biotechniques. 1997;23(4):648–650. doi:10.2144/97234bm22
  • Hegde H, Santhosh C, Sinha RK. Seed mediated synthesis of highly stable CTAB capped triangular silver nanoplates for LSPR sensing. Mater Res Express. 2019;6(10). doi:10.1088/2053-1591/ab3d8c
  • Zhang Q, Li N, Goebl J, Lu Z, Yin Y. A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc. 2011;133(46). doi:10.1021/ja2080345
  • Souza THS, Sarmento-Neto JF, Souza SO, et al. Advances on antimicrobial photodynamic inactivation mediated by Zn(II) porphyrins. J Photochem Photobiol C. 2021;49:100454. doi:10.1016/j.jphotochemrev.2021.100454
  • Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics. 2017;6(5):853–879. doi:10.1515/nanoph-2016-0189
  • Huang YF, Ma KH, Kang KB, et al. Core-shell plasmonic nanostructures to fine-tune long “Au nanoparticle-fluorophore” distance and radiative dynamics. Colloids Surf a Physicochem Eng Asp. 2013;421:101–108. doi:10.1016/j.colsurfa.2012.12.050
  • Ye W, Huang Q, Jiao X, Liu X, Hu G. Plasmon-enhanced fluorescence of CaF2: eu2+nanocrystals by Ag nanoparticles. J Alloys Compd. 2017;719:159–170. doi:10.1016/j.jallcom.2017.05.181
  • Wijesiri N, Yu Z, Tang H, Zhang P. Antifungal photodynamic inactivation against dermatophyte Trichophyton rubrum using nanoparticle-based hybrid photosensitizers. Photodiagnosis Photodyn Ther. 2018;23:202–208. doi:10.1016/j.pdpdt.2018.06.019
  • Shnoudeh AJ, Hamad I, Abdo RW, et al. Synthesis, characterization, and applications of metal nanoparticles. Biomate Bionanotechnol. 2019. doi:10.1016/B978-0-12-814427-5.00015-9
  • Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transac. 2015;44(41):17883–17905. doi:10.1039/C5DT02964C
  • Tedeschi AM, Busi E, Basosi R, Paduano L, D’Errico G. Influence of the alkyl tail length on the anionic surfactant-PVP interaction. J Solution Chem. 2006;35(7). doi:10.1007/s10953-006-9041-1
  • Huang HX, Liu J, Cai YQ. Spectroscopic properties of zinc porphyrin-functionalized poly(4-vinylporphine) derivatives in the solutions, solid powders and doped PMMA films. J Lumin. 2013;143. doi:10.1016/j.jlumin.2013.05.038
  • White B, Banerjee S, O’Brien S, Turro NJ, Herman IP. Zeta-potential measurements of surfactant-wrapped individual single-walled carbon nanotubes. J Phys Chem C. 2007;111(37). doi:10.1021/jp070853e
  • Clemente CS, Ribeiro VGP, Sousa JEA, et al. Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem. J Nanoparticle Res. 2013;15(6). doi:10.1007/s11051-013-1739-6
  • Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res. 2008;10(8):1343–1348. doi:10.1007/s11051-008-9428-6
  • Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–1720. doi:10.1128/AEM.02218-06
  • Panáček A, Kvítek L, Prucek R, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–16253. doi:10.1021/jp063826h
  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17(9):1534. doi:10.3390/ijms17091534
  • Astuti SD, Kharisma DH, Kholimatussa’diah S, Zaidan AH. An in vitro antifungal efficacy of silver nanoparticles activated by diode laser to Candida albicans. AIP Conf Proc. 2017;1888. doi:10.1063/1.5004293
  • Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine. 2016;12(3):789–799. doi:10.1016/j.nano.2015.11.016
  • Lavaee F, Badiei P, Yousefi M, Haddadi P. Comparison of the fungicidal efficacy of photodynamic therapy with methylene blue, silver nanoparticle, and their conjugation on oral Candida isolates using cell viability assay. Curr Med Mycol. 2021;6(4):35–40. doi:10.18502/cmm.6.4.5332
  • Ghaemi B, Hashemi SJ, Kharrazi S, Moshiri A, Kargar Jahromi H, Amani A. Photodynamic therapy-mediated extirpation of cutaneous-resistant dermatophytosis with Ag@ZnO nanoparticles: an efficient therapeutic approach for onychomycosis. Nanomedicine. 2022;17(4):219–236. doi:10.2217/nnm-2021-0138
  • Lucky SS, Soo KC, Zhang Y. Nanoparticles in Photodynamic Therapy. Chem Rev. 2015;115(4):1990–2042. doi:10.1021/cr5004198
  • Maliszewska I, Wanarska E, Tylus W. Sulfonated hydroxyaluminum phthalocyanine-biogenic Au/Ag alloy nanoparticles mixtures for effective photo-eradication of Candida albicans. Photodiagnosis Photodyn Ther. 2020;32:102016. doi:10.1016/j.pdpdt.2020.102016
  • Khaing OMK, Yang Y, Hu Y, Gomez M, Du H, Wang H. Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano. 2012;6(3):1939–1947. doi:10.1021/nn300327c
  • Lkhagvadulam B, Kim JH, Yoon I, Shim YK. Size-dependent photodynamic activity of gold nanoparticles conjugate of water soluble Purpurin-18- N -Methyl- D -Glucamine. Biomed Res Int. 2013;2013:1–10. doi:10.1155/2013/720579
  • Yoon HK, Lou X, Chen YC, Koo Lee YE, Yoon E, Kopelman R. Nanophotosensitizers engineered to generate a tunable mix of reactive oxygen species, for optimizing photodynamic therapy, using a microfluidic device. Chem Mater. 2014;26(4):1592–1600. doi:10.1021/cm403505s
  • Jiang X, Wang L, Carroll SL, Chen J, Wang MC, Wang J. Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 2018;29(6). doi:10.1089/ars.2017.7491
  • Soh N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem. 2006;386(3). doi:10.1007/s00216-006-0366-9
  • Chen X, Zhong Z, Xu Z, Chen L, Wang Y. 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res. 2010;44(6). doi:10.3109/10715761003709802