443
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Therapeutic Potential of Nanomedicine in Management of Alzheimer’s Disease and Glioma

, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 2737-2756 | Received 23 Jan 2023, Accepted 28 Apr 2023, Published online: 22 May 2023

References

  • Prasad K. AGE–RAGE stress: A changing landscape in pathology and treatment of Alzheimer’s disease. Mol Cell Biochem. 2019;459(1):95–112. doi:10.1007/s11010-019-03553-4
  • Ladomersky E, Scholtens DM, Kocherginsky M, et al. The coincidence between increasing age, immunosuppression, and the incidence of patients with glioblastoma. Front Pharmacol. 2019;10:200. doi:10.3389/fphar.2019.00200
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. cell. 2011;144(5):646–674. doi:10.1016/j.cell.2011.02.013
  • Ziech D, Franco R, Pappa A, et al. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res. 2011;711(1–2):167–173. doi:10.1016/j.mrfmmm.2011.02.015
  • Nikitovic D, Tzardi M, Berdiaki A, et al. Cancer microenvironment and inflammation: role of hyaluronan. Front Immunol. 2015;6:169. doi:10.3389/fimmu.2015.00169
  • Franceschi AM. Hybrid PET/MR Neuroimaging: A Comprehensive Approach. Springer Nature; 2022.
  • Cheignon CM, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14(p):450–464. doi:10.1016/j.redox.2017.10.014
  • Matej R, Tesar A, Rusina R. Alzheimer’s disease and other neurodegenerative dementias in comorbidity: a clinical and neuropathological overview. Clin Biochem. 2019;73:26–31. doi:10.1016/j.clinbiochem.2019.08.005
  • Balschun D, Rowan MJ. Hippocampal synaptic plasticity in neurodegenerative diseases: Amyloid-Β, tau and beyond that. Neuroforum. 2018;24(3):203–212. doi:10.1515/nf-2017-0063
  • Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat Neurosci. 2020;23(10):1183–1193. doi:10.1038/s41593-020-0687-6
  • Balducci C, Beeg M, Stravalaci M, et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci. 2010;107(5):2295–2300. doi:10.1073/pnas.0911829107
  • Viola KL, Klein WL. Amyloid β oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol. 2015;129(2):183–206. doi:10.1007/s00401-015-1386-3
  • Saykin AJ, Shen L, Yao X, et al. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement. 2015;11(7):792–814. doi:10.1016/j.jalz.2015.05.009
  • Azhdarzadeh M, Noroozian M, Aghaverdi H, et al. Serum Multivalent Cationic Pattern: Speculation on the Efficient Approach for Detection of Alzheimer’s Disease. Sci Rep. 2013;3(1):1–6. doi:10.1038/srep02782
  • Nie J. Exposure to aluminum in daily life and Alzheimer’s disease, in Neurotoxicity of Aluminum. Springer; 2018:99–111.
  • Ladomersky E, Zhai L, Lauing KL, et al. Advanced age increases immunosuppression in the brain and decreases immunotherapeutic efficacy in subjects with glioblastoma. Clin Cancer Res. 2020;26(19):5232–5245. doi:10.1158/1078-0432.CCR-19-3874
  • Gaist D, Andersen L, Hallas J, et al. Use of statins and risk of glioma: a nationwide case–control study in Denmark. Br J Cancer. 2013;108(3):715–720. doi:10.1038/bjc.2012.536
  • Silvera SAN, Miller AB, Rohan TE. Hormonal and reproductive factors and risk of glioma: a prospective cohort study. Int J Cancer. 2006;118(5):1321–1324. doi:10.1002/ijc.21467
  • Cha GD, Kang T, Baik S, et al. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release. 2020;328:350–367. doi:10.1016/j.jconrel.2020.09.002
  • Mecca C, Giambanco I, Bruscoli S, et al. PP242 counteracts glioblastoma cell proliferation, migration, invasiveness and stemness properties by inhibiting mTORC2/AKT. Front Cell Neurosci. 2018;12:99. doi:10.3389/fncel.2018.00099
  • Scoccianti S, Francolini G, Carta GA, et al. Re-irradiation as salvage treatment in recurrent glioblastoma: a comprehensive literature review to provide practical answers to frequently asked questions. Crit Rev Oncol Hematol. 2018;126(p):80–91. doi:10.1016/j.critrevonc.2018.03.024
  • Zhang P, Xia Q, Liu L, et al. Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy. Front Mol Biosci. 2020;2020:241.
  • Buszek SM, Al Feghali KA, Elhalawani H, et al. Optimal timing of radiotherapy following gross total or subtotal resection of glioblastoma: a real-world assessment using the National Cancer Database. Sci Rep. 2020;10(1):1–9. doi:10.1038/s41598-020-61701-z
  • He H, Li J, Jiang P, et al. The basis and advances in clinical application of boron neutron capture therapy. Radiat Oncol. 2021;16(1):1–8. doi:10.1186/s13014-021-01939-7
  • Tykocki T, Eltayeb M. Ten-year survival in glioblastoma. A systematic review. J Clin Neurosci. 2018;54:7–13. doi:10.1016/j.jocn.2018.05.002
  • Arora L, Kumar A, Arfuso F, et al. The role of signal transducer and activator of transcription 3 (STAT3) and its targeted inhibition in hematological malignancies. Cancers. 2018;10(9):327. doi:10.3390/cancers10090327
  • Zhang J, Sikka S, Siveen KS, et al. Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer. Apoptosis. 2017;22(1):158–168. doi:10.1007/s10495-016-1313-7
  • Grabowski MM, Sankey EW, Ryan KJ, et al. Immune suppression in gliomas. J Neurooncol. 2021;151(1):3–12. doi:10.1007/s11060-020-03483-y
  • West AJ, Tsui V, Stylli SS, et al. The role of interleukin‑6‑STAT3 signalling in glioblastoma. Oncol Lett. 2018;16(4):4095–4104. doi:10.3892/ol.2018.9227
  • Wu J, Feng X, Zhang B, et al. Blocking the bFGF/STAT3 interaction through specific signaling pathways induces apoptosis in glioblastoma cells. J Neurooncol. 2014;120(1):33–41. doi:10.1007/s11060-014-1529-8
  • Birner P, Toumangelova-Uzeir K, Natchev S, et al. STAT3 tyrosine phosphorylation influences survival in glioblastoma. J Neurooncol. 2010;100(3):339–343. doi:10.1007/s11060-010-0195-8
  • Zhang S, Zhao BS, Zhou A, et al. m6A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer cell. 2017;31(4):591–606. e6. doi:10.1016/j.ccell.2017.02.013
  • Dai Z, Wang L, Wang X, et al. Oxymatrine induces cell cycle arrest and apoptosis and suppresses the invasion of human glioblastoma cells through the EGFR/PI3K/Akt/mTOR signaling pathway and STAT3. Oncol Rep. 2018;40(2):867–876. doi:10.3892/or.2018.6512
  • Mashimo T, Pichumani K, Vemireddy V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell. 2014;159(7):1603–1614. doi:10.1016/j.cell.2014.11.025
  • Han D, Yu T, Dong N, et al. Napabucasin, a novel STAT3 inhibitor suppresses proliferation, invasion and stemness of glioblastoma cells. J Exp Clin Cancer Res. 2019;38(1):1–12. doi:10.1186/s13046-019-1289-6
  • Ibáñez K, Boullosa C, Tabarés-Seisdedos R, et al. Molecular evidence for the inverse comorbidity between central nervous system disorders and cancers detected by transcriptomic meta-analyses. PLoS Genet. 2014;10(2):e1004173. doi:10.1371/journal.pgen.1004173
  • Zhang L, Silva TC, Young JI, et al. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer’s disease. Nat Commun. 2020;11(1):1–13. doi:10.1038/s41467-020-19791-w
  • Wan Y-W, Al-Ouran R, Mangleburg CG, et al. Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Rep. 2020;32(2):107908. doi:10.1016/j.celrep.2020.107908
  • Reichel A. The role of blood-brain barrier studies in the pharmaceutical industry. Curr Drug Metab. 2006;7(2):183–203. doi:10.2174/138920006775541525
  • Campisi M, Shin Y, Osaki T, et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials. 2018;180:117–129. doi:10.1016/j.biomaterials.2018.07.014
  • Jamieson JJ, Linville RM, Ding YY, et al. Role of iPSC-derived pericytes on barrier function of iPSC-derived brain microvascular endothelial cells in 2D and 3D. Fluids Barriers CNS. 2019;16(1):1–16. doi:10.1186/s12987-019-0136-7
  • Gosselet F, Loiola RA, Roig A, et al. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int. 2021;144:104952. doi:10.1016/j.neuint.2020.104952
  • Loryan I, Reichel A, Feng B, et al. Unbound Brain-to-Plasma Partition Coefficient, Kp, uu, brain—a Game Changing Parameter for CNS Drug Discovery and Development. Pharm Res. 2022;39(7):1321–1341. doi:10.1007/s11095-022-03246-6
  • Pan Y, Nicolazzo JA. Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics. Adv Drug Deliv Rev. 2018;135:62–74. doi:10.1016/j.addr.2018.04.009
  • Afzal M, Alharbi KS, Alruwaili NK, et al. Nanomedicine in treatment of breast cancer–A challenge to conventional therapy. In: Seminars in cancer biology. Elsevier; 2021.
  • Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell cycle. 2007;6(9):1006–1010. doi:10.4161/cc.6.9.4211
  • Kamat CD, Green DE, Warnke L, et al. Mutant p53 facilitates pro-angiogenic, hyperproliferative phenotype in response to chronic relative hypoxia. Cancer Lett. 2007;249(2):209–219. doi:10.1016/j.canlet.2006.08.017
  • Fu X, Wu S, Li B, et al. Functions of p53 in pluripotent stem cells. Protein Cell. 2020;11(1):71–78. doi:10.1007/s13238-019-00665-x
  • Vancsik T, Forika G, Balogh A, et al. Modulated electro‐hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro. Cancer Med. 2019;8(9):4292–4303. doi:10.1002/cam4.2330
  • Tsabar M, Mock CS, Venkatachalam V, et al. A switch in p53 dynamics marks cells that escape from DSB-induced cell cycle arrest. Cell Rep. 2020;32(5):107995. doi:10.1016/j.celrep.2020.107995
  • Das S, Shukla N, Singh SS, et al. Mechanism of interaction between autophagy and apoptosis in cancer. Apoptosis. 2021;26(9–10):512–533. doi:10.1007/s10495-021-01687-9
  • Liu L, Yan J, Cao Y, et al. Proliferation, migration and invasion of triple negative breast cancer cells are suppressed by berbamine via the PI3K/Akt/MDM2/p53 and PI3K/Akt/mTOR signaling pathways. Oncol Lett. 2021;21(1):1. doi:10.3892/ol.2020.12262
  • Deng Z, Wang H, Liu J, et al. Comprehensive understanding of anchorage-independent survival and its implication in cancer metastasis. Cell Death Dis. 2021;12(7):1–12. doi:10.1038/s41419-021-03890-7
  • Tauffenberger A, Magistretti PJ. Reactive oxygen species: beyond their reactive behavior. Neurochem Res. 2021;46(1):77–87. doi:10.1007/s11064-020-03208-7
  • Lisek K, Campaner E, Ciani Y, et al. Mutant p53 tunes the NRF2-dependent antioxidant response to support survival of cancer cells. Oncotarget. 2018;9(29):20508. doi:10.18632/oncotarget.24974
  • Jembrek MJ, Slade N, Hof PR, et al. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer’s disease. Prog Neurobiol. 2018;168:104–127. doi:10.1016/j.pneurobio.2018.05.001
  • Erekat NS. Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat. 2022;35(1):65–78. doi:10.1002/ca.23792
  • Tajbakhsh A, Read M, Barreto GE, et al. Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer’s disease: Pathological mechanisms and therapeutic outlooks. Eur J Pharmacol. 2021;895:173873. doi:10.1016/j.ejphar.2021.173873
  • Singh BK, Vatsa N, Kumar V, et al. Ube3a deficiency inhibits amyloid plaque formation in APPswe/PS1δE9 mouse model of Alzheimer’s disease. Hum Mol Genet. 2017;26(20):4042–4054. doi:10.1093/hmg/ddx295
  • Yang DS, Saeedi A, Davtyan A, et al. Mesoscopic protein-rich clusters host the nucleation of mutant p53 amyloid fibrils. Proc Natl Acad Sci. 2021;118(10):1.
  • Zajkowicz A, Gdowicz-Kłosok A, Krześniak M, et al. The Alzheimer’s disease-associated TREM2 gene is regulated by p53 tumor suppressor protein. Neurosci Lett. 2018;681:62–67. doi:10.1016/j.neulet.2018.05.037
  • Zarrouk A, Hammouda S, Ghzaiel I, et al. Association between oxidative stress and altered cholesterol metabolism in Alzheimer’s disease patients. Curr Alzheimer Res. 2021;17(9):823–834. doi:10.2174/1567205017666201203123046
  • Amor-Gutiérrez O, Costa-Rama E, Arce-Varas N, et al. Competitive electrochemical immunosensor for the detection of unfolded p53 protein in blood as biomarker for Alzheimer’s disease. Anal Chim Acta. 2020;1093:28–34. doi:10.1016/j.aca.2019.09.042
  • Li X, Gong X, Chen J, et al. miR-340 inhibits glioblastoma cell proliferation by suppressing CDK6, cyclin-D1 and cyclin-D2. Biochem Biophys Res Commun. 2015;460(3):670–677. doi:10.1016/j.bbrc.2015.03.088
  • Sittithumcharee G, Suppramote O, Vaeteewoottacharn K, et al. Dependency of Cholangiocarcinoma on Cyclin D–Dependent Kinase Activity. Hepatology. 2019;70(5):1614–1630. doi:10.1002/hep.30704
  • Chu C, Geng Y, Zhou Y, et al. Cyclin E in normal physiology and disease states. Trends Cell Biol. 2021;31(9):732–746. doi:10.1016/j.tcb.2021.05.001
  • Bai J, Li Y, Zhang G. Cell cycle regulation and anticancer drug discovery. Cancer Biol Med. 2017;14(4):348. doi:10.20892/j.issn.2095-3941.2017.0033
  • Tan X, Luo Q, Zhou S, et al. Erchen plus huiyanzhuyu decoction inhibits the growth of laryngeal carcinoma in a mouse model of phlegm-coagulation-blood-stasis syndrome via the STAT3/Cyclin D1 pathway. Evid Based Complement Alternat Med. 2020;2020:1–14. doi:10.1155/2020/2803496
  • Bouclier C, Simon M, Laconde G, et al. Stapled peptide targeting the CDK4/Cyclin D interface combined with Abemaciclib inhibits KRAS mutant lung cancer growth. Theranostics. 2020;10(5):2008. doi:10.7150/thno.40971
  • Laphanuwat P, Likasitwatanakul P, Sittithumcharee G, et al. Cyclin D1 depletion interferes with oxidative balance and promotes cancer cell senescence. J Cell Sci. 2018;131(12):jcs214726. doi:10.1242/jcs.214726
  • Absalon S, Kochanek DM, Raghavan V, et al. MiR-26b, upregulated in Alzheimer’s disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33(37):14645–14659. doi:10.1523/JNEUROSCI.1327-13.2013
  • Ciapa B, Granon S. Expression of cyclin-D1 in astrocytes varies during aging. Front Aging Neurosci. 2018;10:104. doi:10.3389/fnagi.2018.00104
  • Heo SY, Jeong M-S, Lee HS, et al. Dieckol induces cell cycle arrest by down-regulating CDK 2/cyclin E in response to p21/p53 activation in human tracheal fibroblasts. Cell Biochem Funct. 2022;40(1):71–78. doi:10.1002/cbf.3675
  • Chen X, Low K-H, Alexander A, et al. Cyclin E overexpression sensitizes triple-negative breast cancer to Wee1 kinase inhibition. Clin Cancer Res. 2018;24(24):6594–6610. doi:10.1158/1078-0432.CCR-18-1446
  • Min A, Kim JE, Kim Y-J, et al. Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gastric cancer cells. Cancer Lett. 2018;430:123–132. doi:10.1016/j.canlet.2018.04.037
  • Albero R, Enjuanes A, Demajo S, et al. Cyclin D1 overexpression induces global transcriptional downregulation in lymphoid neoplasms. J Clin Invest. 2018;128(9):4132–4147. doi:10.1172/JCI96520
  • Tao JL, Luo M, Sun H, et al. Overexpression of tripartite motif containing 26 inhibits non‐small cell lung cancer cell growth by suppressing PI3K/AKT signaling. Kaohsiung J Med Sci. 2020;36(6):417–422. doi:10.1002/kjm2.12194
  • Jian Z, Zhang L, Jin L, et al. Rab5 regulates the proliferation, migration and invasion of glioma cells via cyclin E. Oncol Lett. 2020;20(2):1055–1062. doi:10.3892/ol.2020.11660
  • Lee C, Fernandez KJ, Alexandrou S, et al. Cyclin E2 promotes whole genome doubling in breast cancer. Cancers. 2020;12(8):2268. doi:10.3390/cancers12082268
  • Dong L, Yu L, Bai C, et al. USP27-mediated Cyclin E stabilization drives cell cycle progression and hepatocellular tumorigenesis. Oncogene. 2018;37(20):2702–2713. doi:10.1038/s41388-018-0137-z
  • Li S, Zhang H, Wei X. Roles and Mechanisms of Deubiquitinases (DUBs) in Breast Cancer Progression and Targeted Drug Discovery. Life. 2021;11(9):965. doi:10.3390/life11090965
  • Glasgow SD, Ruthazer ES, Kennedy TE. Guiding synaptic plasticity: Novel roles for netrin‐1 in synaptic plasticity and memory formation in the adult brain. J Physiol. 2021;599(2):493–505. doi:10.1113/JP278704
  • Nangia V, O’Connell J, Chopra K, et al. Genetic reduction of tyramine β hydroxylase suppresses Tau toxicity in a Drosophila model of tauopathy. Neurosci Lett. 2021;755:135937. doi:10.1016/j.neulet.2021.135937
  • John A, Reddy PH. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res Rev. 2021;65:101208. doi:10.1016/j.arr.2020.101208
  • Li Y, Guo H, Wang Z, et al. Cyclin F and KIF20A, FOXM1 target genes, increase proliferation and invasion of ovarian cancer cells. Exp Cell Res. 2020;395(2):112212. doi:10.1016/j.yexcr.2020.112212
  • Walter D, Hoffmann S, Komseli E-S, et al. SCFCyclin F-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7(1):1–10. doi:10.1038/ncomms10530
  • Galper J, Rayner SL, Hogan AL, et al. Cyclin F: a component of an E3 ubiquitin ligase complex with roles in neurodegeneration and cancer. Int J Biochem Cell Biol. 2017;89:216–220. doi:10.1016/j.biocel.2017.06.011
  • Deshmukh RS, Sharma S, Das S. Cyclin F-dependent degradation of RBPJ inhibits IDH1R132H-mediated tumorigenesis. Cancer Res. 2018;78(22):6386–6398. doi:10.1158/0008-5472.CAN-18-1772
  • Han CH, Batchelor TT. Isocitrate dehydrogenase mutation as a therapeutic target in gliomas. Chin Clin Oncol. 2017;6(3):33. doi:10.21037/cco.2017.06.11
  • Mackenzie IR, Nicholson AM, Sarkar M, et al. TIA1 mutations in amyotrophic lateral sclerosis and frontotemporal dementia promote phase separation and alter stress granule dynamics. Neuron. 2017;95(4):808–816. e9. doi:10.1016/j.neuron.2017.07.025
  • Sørensen MF, Heimisdóttir SB, Sørensen MD, et al. High expression of cystine–glutamate antiporter xCT (SLC7A11) is an independent biomarker for epileptic seizures at diagnosis in glioma. J Neurooncol. 2018;138(1):49–53. doi:10.1007/s11060-018-2785-9
  • Robert SM, Sontheimer H. Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci. 2014;71(10):1839–1854. doi:10.1007/s00018-013-1521-z
  • Savaskan N E, Fan Z, Broggini T, et al. Neurodegeneration in the brain tumor microenvironment: glutamate in the limelight. Curr Neuropharmacol. 2015;13(2):258–265. doi:10.2174/1570159X13666150122224158
  • Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells. Front Cell Neurosci. 2020;14:51. doi:10.3389/fncel.2020.00051
  • Lange F, Hörnschemeyer J, Kirschstein T. Glutamatergic Mechanisms in Glioblastoma and Tumor-Associated Epilepsy. Cells. 2021;10(5):1226. doi:10.3390/cells10051226
  • Tawfik A, Mohamed R, Kira D, et al. N-Methyl-D-aspartate receptor activation, novel mechanism of homocysteine-induced blood–retinal barrier dysfunction. J Mol Med. 2021;99(1):119–130. doi:10.1007/s00109-020-02000-y
  • Shafiei-Irannejad V, Abbaszadeh S, Janssen PML, et al. Memantine and its benefits for cancer, cardiovascular and neurological disorders. Eur J Pharmacol. 2021;910:174455. doi:10.1016/j.ejphar.2021.174455
  • Estrada LD, Oliveira-Cruz L, Cabrera D. Transforming Growth Factor Beta Type I Role in Neurodegeneration: Implications for Alzheimer´s Disease. Curr Protein Pept Sci. 2018;19(12):1180–1188. doi:10.2174/1389203719666171129094937
  • Lee M, Lin S-R, Chang J-Y, et al. TGF-β induces TIAF1 self-aggregation via type II receptor-independent signaling that leads to generation of amyloid β plaques in Alzheimer’s disease. Cell Death Dis. 2010;1(12):e110–e110. doi:10.1038/cddis.2010.83
  • Chang H-T, Liu -C-C, Chen S-T, et al. WW domain-containing oxidoreductase in neuronal injury and neurological diseases. Oncotarget. 2014;5(23):11792. doi:10.18632/oncotarget.2961
  • Chou P-Y, Lin S-R, Lee M-H, et al. A p53/TIAF1/WWOX triad exerts cancer suppression but may cause brain protein aggregation due to p53/WWOX functional antagonism. Cell Commun Signal. 2019;17(1):1–16. doi:10.1186/s12964-019-0382-y
  • Lee M-H, Shih YH, Yap YV, et al. Zfra restores memory deficits in Alzheimer’s disease triple-transgenic mice by blocking aggregation of TRAPPC6AΔ, SH3GLB2, tau, and amyloid β, and inflammatory NF-κB activation. Alzheimer's Dement. 2017;3(2):189–204.
  • Chang NS. Zfra regulates protein degradation and provides strong prevention against skin cancer. Cancer Research. 2011;71(8_Supplement):4621.
  • Guo T, Zhang D, Zeng Y, et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol Neurodegener. 2020;15(1):1–37. doi:10.1186/s13024-019-0350-4
  • Ruffini N, Klingenberg S, Schweiger S, et al. Common factors in neurodegeneration: a meta-study revealing shared patterns on a multi-omics scale. Cells. 2020;9(12):2642. doi:10.3390/cells9122642
  • Zhou Z, Ni K, Deng H, et al. Dancing with reactive oxygen species generation and elimination in nanotheranostics for disease treatment. Adv Drug Deliv Rev. 2020;158:73–90. doi:10.1016/j.addr.2020.06.006
  • Hook V, Yoon M, Mosier C, et al. Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochim Biophys Acta Proteins Proteom. 2020;1868(8):140428. doi:10.1016/j.bbapap.2020.140428
  • Hickman S, Izzy S, Sen P, Morsett L, El Khoury J. Microglia in neurodegeneration. Nat Neurosci. 2018;21(10):1359–1369. doi:10.1038/s41593-018-0242-x
  • Ernest James Phillips T, Maguire E. Phosphoinositides: roles in the development of microglial-mediated neuroinflammation and neurodegeneration. Front Cell Neurosci. 2021;15:90.
  • Desale SE, Chinnathambi S. Phosphoinositides signaling modulates microglial actin remodeling and phagocytosis in Alzheimer’s disease. Cell Commun Signal. 2021;19(1):1–12. doi:10.1186/s12964-021-00715-0
  • Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab. 2017;37(10):3300–3317. doi:10.1177/0271678X17722436
  • Gaspar R, Meisl G, Buell AK, et al. Secondary nucleation of monomers on fibril surface dominates α -synuclein aggregation and provides autocatalytic amyloid amplification. Q Rev Biophys. 2017;50. doi:10.1017/S0033583516000172
  • Michaels TCT, Šarić A, Curk S, et al. Dynamics of oligomer populations formed during the aggregation of Alzheimer’s Aβ42 peptide. Nat Chem. 2020;12(5):445–451. doi:10.1038/s41557-020-0452-1
  • Malishev R, Nandi S, Śmiłowicz D, et al. Interactions between BIM protein and beta-amyloid may reveal a crucial missing link between Alzheimer’s disease and neuronal cell death. ACS Chem Neurosci. 2019;10(8):3555–3564. doi:10.1021/acschemneuro.9b00177
  • Tang Y, Gao J, Wang T, et al. The effect of drug loading and multiple administration on the protein corona formation and brain delivery property of PEG-PLA nanoparticles. Acta Pharm Sin B. 2021;2021:1.
  • Huang Q, Zhao Q, Peng J, et al. Peptide–polyphenol (KLVFF/EGCG) binary modulators for inhibiting aggregation and neurotoxicity of amyloid-β peptide. ACS Omega. 2019;4(2):4233–4242. doi:10.1021/acsomega.8b02797
  • Liu H, Yu L, Dong X, et al. Synergistic effects of negatively charged hydrophobic nanoparticles and (−)-epigallocatechin-3-gallate on inhibiting amyloid β-protein aggregation. J Colloid Interface Sci. 2017;491:305–312. doi:10.1016/j.jcis.2016.12.038
  • Zhang J, Zhou X, Yu Q, et al. Epigallocatechin-3-gallate (EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity. ACS Appl Mater Interfaces. 2014;6(11):8475–8487. doi:10.1021/am501341u
  • Mourtas S, Lazar AN, Markoutsa E, et al. Multifunctional nanoliposomes with curcumin–lipid derivative and brain targeting functionality with potential applications for Alzheimer disease. Eur J Med Chem. 2014;80:175–183. doi:10.1016/j.ejmech.2014.04.050
  • Papakyriakopoulou P, Manta K, Kostantini C, et al. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for Nose-to-Brain delivery: In vitro and ex vivo evaluation. Int J Pharm. 2021;607:121016. doi:10.1016/j.ijpharm.2021.121016
  • Tong-un T, Muchimapura S, Wattanathorn J, Phachonpai W. Nasal Administration of Quercetin Liposomes Improves Memory Impairment and Neurodegeneration in Animal Model of Alzheimer’s Disease. Am J Agric Biol Sci. 2010;5(3):286–293. doi:10.3844/ajabssp.2010.286.293
  • Kuo Y-C, Chen I-Y, Rajesh R. Use of functionalized liposomes loaded with antioxidants to permeate the blood–brain barrier and inhibit β-amyloid-induced neurodegeneration in the brain. J Taiwan Inst Chem Eng. 2018;87:1–14. doi:10.1016/j.jtice.2018.03.001
  • Sawda C, Moussa C, Turner RS. Resveratrol for Alzheimer’s disease. Ann N Y Acad Sci. 2017;1403(1):142–149. doi:10.1111/nyas.13431
  • Santos AC, Pereira I, Pereira-Silva M, et al. Nanotechnology-based formulations for resveratrol delivery: Effects on resveratrol in vivo bioavailability and bioactivity. Colloids Surf B Biointerfaces. 2019;180:127–140. doi:10.1016/j.colsurfb.2019.04.030
  • Sharma HS, Muresanu DF, Castellani RJ, et al. Nanowired delivery of cerebrolysin with neprilysin and p-Tau antibodies induces superior neuroprotection in Alzheimer’s disease. Prog Brain Res. 2019;245:145–200. doi:10.1016/bs.pbr.2019.03.009
  • Li Q, Wu Y, Chen J, et al. Microglia and immunotherapy in Alzheimer’s disease. Acta Neurol Scand. 2022;145(3):273–278. doi:10.1111/ane.13551
  • Eloy JO, Petrilli R, Trevizan LNF, et al. Immunoliposomes: a review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces. 2017;159:454–467. doi:10.1016/j.colsurfb.2017.07.085
  • Bachurin SO, Bovina EV, Ustyugov AA. Drugs in clinical trials for Alzheimer’s disease: the major trends. Med Res Rev. 2017;37(5):1186–1225. doi:10.1002/med.21434
  • Liu Y, Xu L-P, Dai W, et al. Graphene quantum dots for the inhibition of β amyloid aggregation. Nanoscale. 2015;7(45):19060–19065. doi:10.1039/C5NR06282A
  • Zhang L, Liu F, Sun X, et al. Engineering carbon nanotube fiber for real-time quantification of ascorbic acid levels in a live rat model of Alzheimer’s disease. Anal Chem. 2017;89(3):1831–1837. doi:10.1021/acs.analchem.6b04168
  • Gregory WE, Sharma B, Hu L, et al. Interfacial charge transfer with exfoliated graphene inhibits fibril formation in lysozyme amyloid. Biointerphases. 2020;15(3):031010. doi:10.1116/6.0000019
  • Zhang W, Sigdel G, Mintz KJ, et al. Carbon dots: A future Blood–Brain Barrier penetrating nanomedicine and drug nanocarrier. Int J Nanomedicine. 2021;16:5003. doi:10.2147/IJN.S318732
  • Zhou Y, Liyanage PY, Devadoss D, et al. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale. 2019;11(46):22387–22397. doi:10.1039/C9NR08194A
  • Liu Y, Xu L-P, Wang Q, et al. Synergistic inhibitory effect of GQDs–tramiprosate covalent binding on amyloid aggregation. ACS Chem Neurosci. 2018;9(4):817–823. doi:10.1021/acschemneuro.7b00439
  • Gong X, Zhang Q, Gao Y, et al. Phosphorus and nitrogen dual-doped hollow carbon dot as a nanocarrier for doxorubicin delivery and biological imaging. ACS Appl Mater Interfaces. 2016;8(18):11288–11297. doi:10.1021/acsami.6b01577
  • Chung YJ, Kim K, Lee BI, et al. Carbon Nanodot‐Sensitized Modulation of Alzheimer’s β‐Amyloid Self‐Assembly, Disassembly, and Toxicity. Small. 2017;13(34):1700983. doi:10.1002/smll.201700983
  • Stelmashook E, Isaev NK, Genrikhs EE, et al. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry. 2014;79(5):391–396. doi:10.1134/S0006297914050022
  • James SA, Churches QI, de Jonge MD, et al. Iron, copper, and zinc concentration in Aβ plaques in the APP/PS1 mouse model of Alzheimer’s disease correlates with metal levels in the surrounding neuropil. ACS Chem Neurosci. 2017;8(3):629–637. doi:10.1021/acschemneuro.6b00362
  • Pithadia AS, Lim MH. Metal-associated amyloid-β species in Alzheimer’s disease. Curr Opin Chem Biol. 2012;16(1–2):67–73. doi:10.1016/j.cbpa.2012.01.016
  • Vilella A, Belletti D, Sauer AK, et al. Reduced plaque size and inflammation in the APP23 mouse model for Alzheimer’s disease after chronic application of polymeric nanoparticles for CNS targeted zinc delivery. J Trace Elem Med Biol. 2018;49:210–221. doi:10.1016/j.jtemb.2017.12.006
  • Sun D, Zhang W, Yu Q, et al. Chiral penicillamine-modified selenium nanoparticles enantioselectively inhibit metal-induced amyloid β aggregation for treating Alzheimer’s disease. J Colloid Interface Sci. 2017;505:1001–1010. doi:10.1016/j.jcis.2017.06.083
  • Mittapelly N, Thalla M, Pandey G, et al. Long acting ionically paired embonate based nanocrystals of donepezil for the treatment of Alzheimer’s disease: a proof of concept study. Pharm Res. 2017;34(11):2322–2335. doi:10.1007/s11095-017-2240-1
  • Krishna KV, Wadhwa G, Alexander A, et al. Design and biological evaluation of lipoprotein-based donepezil nanocarrier for enhanced brain uptake through oral delivery. ACS Chem Neurosci. 2019;10(9):4124–4135. doi:10.1021/acschemneuro.9b00343
  • Pagar KP, Sardar SM, Vavia PR. Novel L-Lactide-depsipeptide polymeric carrier for enhanced brain uptake of rivastigmine in treatment of Alzheimer’s disease. J Biomed Nanotechnol. 2014;10(3):415–426. doi:10.1166/jbn.2014.1719
  • Nguyen TT, Dung Nguyen TT, Vo TK, et al. Nanotechnology-based drug delivery for central nervous system disorders. Biomed Pharmacother. 2021;143:112117. doi:10.1016/j.biopha.2021.112117
  • MacLeod R, Hillert E-K, Cameron RT, et al. The role and therapeutic targeting of α-, β-and γ-secretase in Alzheimer’s disease. Future Sci OA. 2015;1(3). doi:10.4155/fso.15.9
  • Imamura Y, Umezawa N, Osawa S, et al. Effect of helical conformation and side chain structure on γ-secretase inhibition by β-peptide foldamers: insight into substrate recognition. J Med Chem. 2013;56(4):1443–1454. doi:10.1021/jm301306c
  • Rassu G, Soddu E, Posadino AM, et al. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf B Biointerfaces. 2017;152:296–301. doi:10.1016/j.colsurfb.2017.01.031
  • Zheng M, Tao W, Zou Y, et al. Nanotechnology-based strategies for siRNA brain delivery for disease therapy. Trends Biotechnol. 2018;36(5):562–575. doi:10.1016/j.tibtech.2018.01.006
  • Wang P, Zheng X, Guo Q, et al. Systemic delivery of BACE1 siRNA through neuron-targeted nanocomplexes for treatment of Alzheimer’s disease. J Control Release. 2018;279:220–233. doi:10.1016/j.jconrel.2018.04.034
  • Zhou Y, Zhu F, Liu Y, et al. Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci Adv. 2020;6(41):eabc7031. doi:10.1126/sciadv.abc7031
  • Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88(1):487–514. doi:10.1146/annurev-biochem-013118-111902
  • Snyder A, Grunseich C. Hitching a ride on exosomes: a new approach for the delivery of siRNA-mediated therapies. Brain. 2021;144(11):3286–3287. doi:10.1093/brain/awab398
  • Urban AS, Pavlov KV, Kamynina AV, et al. Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer’s Disease Development. Molecules. 2021;26(10):2897. doi:10.3390/molecules26102897
  • Song C, Shi J, Zhang P, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11(1):1–17. doi:10.1186/s40035-022-00292-3
  • Farizatto KLG, Ikonne US, Almeida MF, et al. Aβ42-mediated proteasome inhibition and associated tau pathology in hippocampus are governed by a lysosomal response involving cathepsin B: Evidence for protective crosstalk between protein clearance pathways. PLoS One. 2017;12(8):e0182895. doi:10.1371/journal.pone.0182895
  • Xiao S, Song -L-L, Li J-T, et al. Intraperitoneal Administration of Monoclonal Antibody Against Pathologic Aβ 42 Aggregates Alleviated Cognitive Deficits and Synaptic Lesions in APP/PS1 Mice. J Alzheimer's Dis. 2020;73(2):657–670. doi:10.3233/JAD-190874
  • Usman M, Bhardwaj S, Roychoudhury S, et al. Immunotherapy for Alzheimer’s disease: current scenario and future perspectives. J Prev Alzheimer's Dis. 2021;8(4):534–551. doi:10.14283/jpad.2021.52
  • Yamazaki Y, Painter MM, Bu G, et al. Apolipoprotein E as a therapeutic target in Alzheimer’s disease: a review of basic research and clinical evidence. CNS drugs. 2016;30(9):773–789. doi:10.1007/s40263-016-0361-4
  • Huang Y-WA, Zhou B, Nabet AM, et al. Differential Signaling Mediated by ApoE2, ApoE3, and ApoE4 in Human Neurons Parallels Alzheimer’s Disease Risk. The Journal of Neuroscience. 2019;39(37):7408–7427. doi:10.1523/JNEUROSCI.2994-18.2019
  • Davis AA, Inman CE, Wargel ZM, et al. APOE genotype regulates pathology and disease progression in synucleinopathy. Sci Transl Med. 2020;12(529):eaay3069. doi:10.1126/scitranslmed.aay3069
  • Zhao N, Urban AS, Pavlov KV, et al. APOE4 exacerbates α-synuclein pathology and related toxicity independent of amyloid. Sci Transl Med. 2020;12(529):eaay1809. doi:10.1126/scitranslmed.aay1809
  • Chai AB, Lam HH, Kockx M, Gelissen IC. Apolipoprotein E isoform-dependent effects on the processing of Alzheimer’s amyloid-β. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(9):158980.
  • Frieden C, Wang H, Ho CM. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain–domain interactions. Proc Natl Acad Sci. 2017;114(24):6292–6297. doi:10.1073/pnas.1705080114
  • Chen Y, Strickland MR, Soranno A, et al. Apolipoprotein E: structural insights and links to Alzheimer disease pathogenesis. Neuron. 2021;109(2):205–221. doi:10.1016/j.neuron.2020.10.008
  • Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24(5):647–657. doi:10.1038/s41591-018-0004-z
  • Montazersaheb S, Ahmadian E, Dizaj SM, et al. Emerging Nanotherapeutic Alzheimer’s Disease. Front Clin Drug Res. 2021;2:173.
  • Martin-Rapun R, De Matteis L, Ambrosone A, et al. Targeted Nanoparticles for the Treatment of Alzheimer’s Disease. Curr Pharm Des. 2017;23(13):1927–1952. doi:10.2174/1381612822666161226151011
  • Kong N, Deng M, Sun X-N, et al. Polydopamine-functionalized CA-(PCL-ran-PLA) nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Front Pharmacol. 2018;9:125. doi:10.3389/fphar.2018.00125
  • Su S, Kang PM. Systemic review of biodegradable nanomaterials in nanomedicine. Nanomaterials. 2020;10(4):656. doi:10.3390/nano10040656
  • Griffin S, Masood M, Nasim M, et al. Natural nanoparticles: a particular matter inspired by nature. Antioxidants. 2017;7(1):3. doi:10.3390/antiox7010003
  • Ibarra LE, Beaugé L, Arias-Ramos N, et al. Trojan horse monocyte-mediated delivery of conjugated polymer nanoparticles for improved photodynamic therapy of glioblastoma. Nanomedicine. 2020;15(17):1687–1707. doi:10.2217/nnm-2020-0106
  • Casamonti M, Risaliti L, Vanti G, et al. Andrographolide loaded in micro-and nano-formulations: improved bioavailability, target-tissue distribution, and efficacy of the “king of bitters”. Engineering. 2019;5(1):69–75. doi:10.1016/j.eng.2018.12.004
  • Zhang C, Song J, Lou L, et al. Doxorubicin‐loaded nanoparticle coated with endothelial cells‐derived exosomes for immunogenic chemotherapy of glioblastoma. Bioeng Transl Med. 2021;6(3):e10203. doi:10.1002/btm2.10203
  • Kaushal N. Double-Coated Biodegradable Poly (Butyl Cyanoacrylate) Nanoparticulate Delivery Systems for Brain Targeting of Doxorubicin via Oral Administration. New York: St. John’s University; 2021.
  • Wiwatchaitawee K, Quarterman JC, Geary SM, et al. Enhancement of therapies for glioblastoma (GBM) using nanoparticle-based delivery systems. AAPS PharmSciTech. 2021;22(2):1–16. doi:10.1208/s12249-021-01928-9
  • Pereverzeva E, Treschalin I, Bodyagin D, et al. Influence of the formulation on the tolerance profile of nanoparticle-bound doxorubicin in healthy rats: focus on cardio-and testicular toxicity. Int J Pharm. 2007;337(1–2):346–356. doi:10.1016/j.ijpharm.2007.01.031
  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine. 2018;13:3921. doi:10.2147/IJN.S165210
  • Marques A, Costa PJ, Velho S, et al. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release. 2020;320:180–200. doi:10.1016/j.jconrel.2020.01.035
  • Kaźmierczak Z, Szostak-Paluch K, Przybyło M, et al. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem. 2020;28(18):115556. doi:10.1016/j.bmc.2020.115556
  • Vora P, Venugopal C, Salim SK, et al. The rational development of CD133-targeting immunotherapies for glioblastoma. Cell Stem Cell. 2020;26(6):832–844. e6. doi:10.1016/j.stem.2020.04.008
  • Zhu X, Prasad S, Gaedicke S, et al. Patient-derived glioblastoma stem cells are killed by CD133-specific CAR T cells but induce the T cell aging marker CD57. Oncotarget. 2015;6(1):171. doi:10.18632/oncotarget.2767
  • Jhaveri A, Deshpande P, Pattni B, et al. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101. doi:10.1016/j.jconrel.2018.03.006
  • Devarajan PV, Dandekar P, D’Souza AA. Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. Springer; 2019.
  • Zheng M, Ruan S, Liu S, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS nano. 2015;9(11):11455–11461. doi:10.1021/acsnano.5b05575
  • Qiao L, Sun T, Zheng X, et al. Exploring the optimal ratio of d-glucose/l-aspartic acid for targeting carbon dots toward brain tumor cells. Mater Sci Eng C. 2018;85:1–6. doi:10.1016/j.msec.2017.12.011
  • Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev. 2002;54(4):561–587. doi:10.1124/pr.54.4.561
  • Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019;11(13):6192–6205. doi:10.1039/C8NR08970A
  • Liyanage PY, Zhou Y, Al-Youbi AO, et al. Pediatric glioblastoma target-specific efficient delivery of gemcitabine across the blood–brain barrier via carbon nitride dots. Nanoscale. 2020;12(14):7927–7938. doi:10.1039/D0NR01647K
  • Sun T, Patil R, Galstyan A, et al. Blockade of a laminin-411–notch axis with CRISPR/Cas9 or a nanobioconjugate inhibits glioblastoma growth through tumor-microenvironment cross-talk. Cancer Res. 2019;79(6):1239–1251. doi:10.1158/0008-5472.CAN-18-2725
  • Ljubimova JY. In vivo targeting of laminin-411-β1 integrin-Notch signaling pathway using nanobioconjugate alters glioma microenvironment for effective treatment. AACR; 2017.
  • Canfarotta F, Lezina L, Guerreiro A, et al. Specific drug delivery to cancer cells with double-imprinted nanoparticles against epidermal growth factor receptor. Nano Lett. 2018;18(8):4641–4646. doi:10.1021/acs.nanolett.7b03206
  • Zhang Q, Liu Q, Du M, et al. Cetuximab and Doxorubicin loaded dextran-coated Fe3O4 magnetic nanoparticles as novel targeted nanocarriers for non-small cell lung cancer. J Magn Magn Mater. 2019;481:122–128. doi:10.1016/j.jmmm.2019.01.021
  • Katsushima K, Natsume A, Ohka F, et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat Commun. 2016;7(1):1–14. doi:10.1038/ncomms13616
  • Hsu SPC, Dhawan U, Tseng -Y-Y, et al. Glioma-sensitive delivery of Angiopep-2 conjugated iron gold alloy nanoparticles ensuring simultaneous tumor imaging and hyperthermia mediated cancer theranostics. Appl Mater Today. 2020;18:100510. doi:10.1016/j.apmt.2019.100510
  • Wang M, Kuang R, Huang B, et al. Polylactic acid block copolymer grafted temozolomide targeted nano delivery in the treatment of glioma. Mater Express. 2021;11(5):627–633. doi:10.1166/mex.2021.1961
  • Xuan S, Shin DH, Kim J-S. Angiopep-2-conjugated liposomes encapsulating γ-secretase inhibitor for targeting glioblastoma stem cells. J Pharm Investig. 2014;44(7):473–483. doi:10.1007/s40005-014-0151-2
  • Xu H, Li C, Wei Y, et al. Angiopep-2-modified calcium arsenite-loaded liposomes for targeted and pH-responsive delivery for anti-glioma therapy. Biochem Biophys Res Commun. 2021;551:14–20. doi:10.1016/j.bbrc.2021.02.138
  • Liu Y, Mei L, Yu Q, et al. Multifunctional tandem peptide modified paclitaxel-loaded liposomes for the treatment of vasculogenic mimicry and cancer stem cells in malignant glioma. ACS Appl Mater Interfaces. 2015;7(30):16792–16801. doi:10.1021/acsami.5b04596
  • Wang Y, Ying X, Xu H, et al. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int J Nanomedicine. 2017;12:1369. doi:10.2147/IJN.S124276
  • Shi M, Anantha M, Wehbe M, et al. Liposomal formulations of carboplatin injected by convection-enhanced delivery increases the median survival time of F98 glioma bearing rats. J Nanobiotechnology. 2018;16(1):1–12. doi:10.1186/s12951-018-0404-8
  • Xia P, Li Q, Wu G, et al. An immune-related lncRNA signature to predict survival in glioma patients. Cell Mol Neurobiol. 2021;41(2):365–375. doi:10.1007/s10571-020-00857-8
  • Sriraman A. Targeting MDM2, the antagonist of the tumor suppressor p53. Niedersächsische Staats-und Universitätsbibliothek Göttingen; 2018.
  • Yang R, Cai TT, Wu XJ, et al. Tumour YAP1 and PTEN expression correlates with tumour‐associated myeloid suppressor cell expansion and reduced survival in colorectal cancer. Immunology. 2018;155(2):263–72.
  • Kreatsoulas D, Bolyard C, Wu BX, et al. Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol. 2022;15(1):1–30.
  • Loya J, Zhang C, Cox E, et al. Biological intratumoral therapy for the high-grade glioma part I: intratumoral delivery and immunotoxins. CNS Oncol. 2019;8(3):CNS38. doi:10.2217/cns-2019-0001
  • Mohammed S, Shamseddine AA, Newcomb B, et al. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Res. 2021;23(1):1–20. doi:10.1186/s13058-021-01452-5
  • Wang T, Tang J, Yang H, et al. Effect of apatinib plus pegylated liposomal doxorubicin vs pegylated liposomal doxorubicin alone on platinum-resistant recurrent ovarian cancer: the APPROVE randomized clinical trial. JAMA Oncol. 2022;8(8):1169–1176. doi:10.1001/jamaoncol.2022.2253
  • Riley RS, June CH, Langer R, et al. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. 2019;18(3):175–196. doi:10.1038/s41573-018-0006-z
  • Feng X, Xu W, Liu J, et al. Polypeptide nanoformulation-induced immunogenic cell death and remission of immunosuppression for enhanced chemoimmunotherapy. Sci Bull. 2021;66(4):362–373. doi:10.1016/j.scib.2020.07.013
  • Ding Y, Xu Y, Yang W, et al. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today. 2020;35:100970. doi:10.1016/j.nantod.2020.100970
  • Singh PK, Srivastava AK, Dev A, et al. 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohydr Polym. 2018;180:365–375. doi:10.1016/j.carbpol.2017.10.030
  • Dorababu A. Recent Advances in Nanoformulated Chemotherapeutic Drug Delivery (2015‐2019). ChemistrySelect. 2019;4(29):8731–8744. doi:10.1002/slct.201901064
  • Joshi HA, Patwardhan RS, Sharma D, et al. Pre-clinical evaluation of an innovative oral nano-formulation of baicalein for modulation of radiation responses. Int J Pharm. 2021;595:120181. doi:10.1016/j.ijpharm.2020.120181
  • Frankel BM, Cachia D, Patel SJ, et al. Targeting subventricular zone progenitor cells with intraventricular liposomal encapsulated cytarabine in patients with secondary glioblastoma: A report of two cases. SN Compr Clin Med. 2020;2(6):836–843. doi:10.1007/s42399-020-00322-z
  • Ahmadzada T, Reid G, McKenzie DR. Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev. 2018;10(1):69–86. doi:10.1007/s12551-017-0392-1
  • Rahman M, Alharbi KS, Alruwaili NK, et al. Nucleic acid-loaded lipid-polymer nanohybrids as novel nanotherapeutics in anticancer therapy. Expert Opin Drug Deliv. 2020;17(6):805–816. doi:10.1080/17425247.2020.1757645
  • Ferreira D, Fontinha D, Martins C, et al. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules. 2020;25(15):3489. doi:10.3390/molecules25153489
  • Galli M, Guerrini A, Cauteruccio S, et al. Superparamagnetic iron oxide nanoparticles functionalized by peptide nucleic acids. RSC Adv. 2017;7(25):15500–15512. doi:10.1039/C7RA00519A
  • Li C, Dou Y, Chen Y, et al. Site‐specific microRNA‐33 antagonism by pH‐responsive nanotherapies for treatment of atherosclerosis via regulating cholesterol efflux and adaptive immunity. Adv Funct Mater. 2020;30(42):2002131. doi:10.1002/adfm.202002131
  • Liu Y, Zhang D, An Y, et al. Non-invasive PTEN mRNA brain delivery effectively mitigates growth of orthotopic glioblastoma. Nano Today. 2023;49:101790. doi:10.1016/j.nantod.2023.101790
  • Wang Y, Sun Y, Geng N, et al. A Biomimetic Nanomedicine Targets Orthotopic Glioblastoma by Combinatorial Co‐Delivery of Temozolomide and a Methylguanine‐DNA Methyltransferase Inhibitor. Adv Ther. 2022;5(12):2200095. doi:10.1002/adtp.202200095
  • Kubiatowicz LJ, Mohapatra A, Krishnan N, Fang RH, Zhang L. mRNA nanomedicine: Design and recent applications. In: Exploration. Wiley Online Library; 2022.
  • Shah U, Joshi G, Sawant K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater Sci Eng C. 2014;35:153–163. doi:10.1016/j.msec.2013.10.038
  • Binda A, Murano C, Rivolta I. Innovative therapies and nanomedicine applications for the treatment of Alzheimer’s disease: a state-of-the-art (2017–2020). Int J Nanomedicine. 2020;15:6113. doi:10.2147/IJN.S231480
  • Tóth OM, Menyhárt Á, Varga VÉ, et al. Chitosan nanoparticles release nimodipine in response to tissue acidosis to attenuate spreading depolarization evoked during forebrain ischemia. Neuropharmacology. 2020;162:107850. doi:10.1016/j.neuropharm.2019.107850
  • Remya P, Damodharan N. Formulation, development and characterisation of nimodipine loaded solid lipid nanoparticles. Int J App Pharm. 2020;2020:265–271.
  • Sha’at F, Pavaloiu RD, Salceanu DC, et al. Formulation of Polymeric Multicomponent Systems Containing Cardiovascular APIs. Mater Plast. 2018;55(1):121. doi:10.37358/MP.18.1.4976
  • Alawdi SH, Eidi H, Safar MM, et al. Loading amlodipine on diamond nanoparticles: A novel drug delivery system. Nanotechnol Sci Appl. 2020;12:47. doi:10.2147/NSA.S232517
  • Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019;7:113. doi:10.3389/fbioe.2019.00113
  • Yuan M, Wang Y, Qin Y-X. Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. Nanomedicine. 2019;21:102052. doi:10.1016/j.nano.2019.102052
  • Xiao Y, Zhang E, Fu A. Promotion of SH-SY5Y cell growth by gold nanoparticles modified with 6-mercaptopurine and a neuron-penetrating peptide. Nanoscale Res Lett. 2017;12(1):1–9. doi:10.1186/s11671-017-2417-x
  • Katebi S, Esmaeili A, Ghaedi K, et al. Superparamagnetic iron oxide nanoparticles combined with NGF and quercetin promote neuronal branching morphogenesis of PC12 cells. Int J Nanomedicine. 2019;14:2157. doi:10.2147/IJN.S191878
  • Wójtowicz S, Strosznajder AK, Jeżyna M, et al. The novel role of PPAR alpha in the brain: promising target in therapy of Alzheimer’s disease and other neurodegenerative disorders. Neurochem Res. 2020;45(5):972–988. doi:10.1007/s11064-020-02993-5
  • Strosznajder AK, Wójtowicz S, Jeżyna MJ, et al. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Med. 2020:1–13. doi:10.1007/s12017-019-08556-4
  • Wagner N, Wagner K-D. PPAR beta/delta and the hallmarks of cancer. Cells. 2020;9(5):1133. doi:10.3390/cells9051133
  • Silva-Abreu M, Calpena AC, Andrés-Benito P, et al. PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer’s disease: in vitro and in vivo studies. Int J Nanomedicine. 2018;13:5577. doi:10.2147/IJN.S171490
  • Carradori D, Balducci C, Re F, et al. Antibody-functionalized polymer nanoparticle leading to memory recovery in Alzheimer’s disease-like transgenic mouse model. Nanomedicine. 2018;14(2):609–618. doi:10.1016/j.nano.2017.12.006
  • Sun J, Xie W, Zhu X, et al. Sulfur nanoparticles with novel morphologies coupled with brain-targeting peptides RVG as a new type of inhibitor against metal-induced aβ aggregation. ACS Chem Neurosci. 2017;9(4):749–761. doi:10.1021/acschemneuro.7b00312
  • Ji D, Wu X, Li D, et al. Protective effects of chondroitin sulphate nano-selenium on a mouse model of Alzheimer’s disease. Int J Biol Macromol. 2020;154:233–245. doi:10.1016/j.ijbiomac.2020.03.079
  • Sun T, Li Y, Huang Y, et al. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy. Oncotarget. 2016;7(28):43095. doi:10.18632/oncotarget.9355
  • Qin L, Wang C-Z, Fan H-J, et al. A dual‑targeting liposome conjugated with transferrin and arginine‑glycine‑aspartic acid peptide for glioma‑targeting therapy. Oncol Lett. 2014;8(5):2000–2006. doi:10.3892/ol.2014.2449
  • Caruso G, Caffo M, Raudino G, et al. Antisense oligonucleotides as an innovative therapeutic strategy in the treatment of high-grade gliomas. Recent Pat CNS Drug Discov. 2010;5(1):53–69. doi:10.2174/157488910789753503
  • Chou S-T, Patil R, Galstyan A, et al. Simultaneous blockade of interacting CK2 and EGFR pathways by tumor-targeting nanobioconjugates increases therapeutic efficacy against glioblastoma multiforme. J Control Release. 2016;244:14–23. doi:10.1016/j.jconrel.2016.11.001
  • Kaluzova M, Bouras A, Machaidze R, et al. Targeted therapy of glioblastoma stem-like cells and tumor non-stem cells using cetuximab-conjugated iron-oxide nanoparticles. Oncotarget. 2015;6(11):8788. doi:10.18632/oncotarget.3554
  • Wang X, Zhao Y, Dong S, et al. Cell-penetrating peptide and transferrin co-modified liposomes for targeted therapy of glioma. Molecules. 2019;24(19):3540. doi:10.3390/molecules24193540
  • Kakinen A, Javed I, Davis TP, et al. In vitro and in vivo models for anti-amyloidosis nanomedicines. Nanoscale Horiz. 2021;6(2):95–119. doi:10.1039/D0NH00548G
  • Uddin M, Kabir MT, Niaz K, et al. Molecular insight into the therapeutic promise of flavonoids against Alzheimer’s disease. Molecules. 2020;25(6):1267. doi:10.3390/molecules25061267
  • Rajput AP, Butani SB. Resveratrol anchored nanostructured lipid carrier loaded in situ gel via nasal route: Formulation, optimization and in vivo characterization. J Drug Deliv Sci Technol. 2019;51:214–223. doi:10.1016/j.jddst.2019.01.040
  • Savla SR, Laddha AP, Kulkarni YA. Pharmacology of apocynin: a natural acetophenone. Drug Metab Rev. 2021;53(4):1–21.
  • Brenza TM, Ghaisas S, Ramirez JEV, et al. Neuronal protection against oxidative insult by polyanhydride nanoparticle-based mitochondria-targeted antioxidant therapy. Nanomedicine. 2017;13(3):809–820. doi:10.1016/j.nano.2016.10.004
  • Vaz GR, Hädrich G, Bidone J, et al. Development of nasal lipid nanocarriers containing curcumin for brain targeting. J Alzheimer's Dis. 2017;59(3):961–974. doi:10.3233/JAD-160355
  • Djiokeng Paka G, Doggui S, Zaghmi A, et al. Neuronal Uptake and Neuroprotective Properties of Curcumin-Loaded Nanoparticles on SK-N-SH Cell Line: Role of Poly(lactide- co -glycolide) Polymeric Matrix Composition. Mol Pharm. 2016;13(2):391–403. doi:10.1021/acs.molpharmaceut.5b00611
  • Sokolik V, Berchenko O, Shulga S. Comparative analysis of nasal therapy with soluble and liposomal forms of curcumin on rats with Alzheimer’s disease model. J Alzheimer's Dis Parkinsonism. 2017;7(357):2161–0460.1000357.
  • Ishak RA, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv. 2017;24(1):1874–1890. doi:10.1080/10717544.2017.1410263
  • Lohan S, Raza K, Mehta SK, et al. Anti-Alzheimer’s potential of berberine using surface decorated multi-walled carbon nanotubes: a preclinical evidence. Int J Pharm. 2017;530(1–2):263–278. doi:10.1016/j.ijpharm.2017.07.080
  • Su X, Zhang D, Zhang H, et al. Preparation and characterization of angiopep-2 functionalized ginsenoside-Rg3 loaded nanoparticles and the effect on C6 glioma cells. Pharm Dev Technol. 2020;25(3):385–395. doi:10.1080/10837450.2018.1551901
  • Lv L, Yang F, Li H, et al. Brain-targeted co-delivery of β-amyloid converting enzyme 1 shRNA and epigallocatechin-3-gallate by multifunctional nanocarriers for Alzheimer’s disease treatment. IUBMB life. 2020;72(8):1819–1829. doi:10.1002/iub.2330
  • Fan S, Zheng Y, Liu X, et al. Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease. Drug Deliv. 2018;25(1):1091–1102. doi:10.1080/10717544.2018.1461955
  • Ali T, Kim MJ, Rehman SU, et al. Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Aβ1–42 mouse model of Alzheimer’s disease. Mol Neurobiol. 2017;54(8):6490–6506. doi:10.1007/s12035-016-0136-4