297
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Dual Stimuli-Responsive Micelles for Imaging-Guided Mitochondrion-Targeted Photothermal/Photodynamic/Chemo Combination Therapy-Induced Immunogenic Cell Death

, ORCID Icon, , , , , , & ORCID Icon show all
Pages 4381-4402 | Received 13 Mar 2023, Accepted 14 Jul 2023, Published online: 02 Aug 2023

References

  • Huang Z, Wang Y, Yao D, et al. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat Commun. 2021;12(1):145–163. doi:10.1038/s41467-020-20243-8
  • Wu H, Du X, Xu J, et al. Multifunctional biomimetic nanoplatform based on photodynamic therapy and DNA repair intervention for the synergistic treatment of breast cancer. Acta Biomaterialia. 2022;S1742-7061(22):00813. doi:10.1016/j.actbio.2022.12.010
  • Ding M, Zhang Y, Yu N, et al. Augmenting immunogenic cell death and alleviating myeloid-derived suppressor cells by sono-activatable semiconducting polymer nanopartners for immunotherapy. Adv Mater. 2023:e2302508. doi:10.1002/adma.202302508
  • Oresta B, Pozzi C, Braga D, et al. Mitochondrial metabolic reprogramming controls the induction of immunogenic cell death and efficacy of chemotherapy in bladder cancer. Sci Transl Med. 2021;13(575):eaba6110. doi:10.1126/scitranslmed.aba6110
  • Wan J, Zhang X, Li Z, et al. Oxidative stress amplifiers as immunogenic cell death nanoinducers disrupting mitochondrial redox homeostasis for cancer immunotherapy. Adv Healthcare Mater. 2022:e2202710. doi:10.1002/adhm.202202710
  • Kroemer G, Galassi C, Zitvogel L, et al. Immunogenic cell stress and death. Nat Immunol. 2022;23(4):487–500. doi:10.1038/s41590-022-01132-2
  • Alzeibak R, Mishchenko TA, Shilyagina NY, et al. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer. 2021;9(1):e001926. doi:10.1136/jitc-2020-001926
  • Jiang H, Fu H, Guo Y, et al. Evoking tumor associated macrophages by mitochondria-targeted magnetothermal immunogenic cell death for cancer immunotherapy. Biomaterials. 2022;289:121799. doi:10.1016/j.biomaterials.2022.121799
  • Wei B, Pan J, Yuan R, et al. Polarization of tumor-associated macrophages by nanoparticle-loaded Escherichia coli combined with immunogenic cell death for cancer immunotherapy. Nano Lett. 2021;21(10):4231–4240. doi:10.1021/acs.nanolett.1c00209
  • Jiang M, Zeng J, Zhao L, et al. Chemotherapeutic drug-induced immunogenic cell death for nanomedicine-based cancer chemo-immunotherapy. Nanoscale. 2021;13(41):17218–17235. doi:10.1039/d1nr05512g
  • Kou Q, Huang Y, Su Y, et al. Erythrocyte membrane-camouflaged DNA-functionalized upconversion nanoparticles for tumor-targeted chemotherapy and immunotherapy. Nanoscale. 2023. doi:10.1039/d3nr00542a
  • Widjaya A, Liu Y, Yang Y, et al. Tumor-permeable smart liposomes by modulating the tumor microenvironment to improve the chemotherapy. J Controlled Release. 2022;344:62–79. doi:10.1016/j.jconrel.2022.02.020
  • Ma B, Sheng J, Wang P, et al. Combinational phototherapy and hypoxia-activated chemotherapy favoring antitumor immune responses. Int J Nanomedicine. 2019;14:4541–4558. doi:10.2147/IJN.S203383
  • Li Z, Lai X, Fu S, et al. Immunogenic cell death activates the tumor immune microenvironment to boost the immunotherapy efficiency. Adv Sci. 2022;9(22):e2201734. doi:10.1002/advs.202201734
  • Mai Z, Zhong J, Zhang J, et al. Carrier-free immunotherapeutic nano-booster with dual synergistic effects based on glutaminase inhibition combined with photodynamic therapy. ACS nano. 2023. doi:10.1021/acsnano.2c11037
  • Xu M, Zhang C, He S, et al. Activatable immunoprotease nanorestimulator for second near-infrared photothermal immunotherapy of cancer. ACS Nano. 2023;17(9):8183–8194. doi:10.1021/acsnano.2c12066
  • Wang L, Niu C. IR780-based nanomaterials for cancer imaging and therapy. J Mater Chem B. 2021;9(20):4079–4097. doi:10.1039/d1tb00407g
  • Tian H, Zhou L, Wang Y, et al. A targeted nanomodulator capable of manipulating tumor microenvironment against metastasis. J Controlled Release. 2022;348:590–600. doi:10.1016/j.jconrel.2022.06.022
  • Mai X, Zhang Y, Fan H, et al. Integration of immunogenic activation and immunosuppressive reversion using mitochondrial-respiration-inhibited platelet-mimicking nanoparticles. Biomaterials. 2020;232:119699. doi:10.1016/j.biomaterials.2019.119699
  • Li Z, Chu Z, Yang J, et al. Immunogenic cell death augmented by manganese zinc sulfide nanoparticles for metastatic melanoma immunotherapy. ACS nano. 2022;16(9):15471–15483. doi:10.1021/acsnano.2c08013
  • Yan J, Wang C, Jiang X, et al. Application of phototherapeutic-based nanoparticles in colorectal cancer. Int J Biol Sci. 2021;17(5):1361–1381. doi:10.7150/ijbs.58773
  • Maggi F, Manfredi A, Carosio F, et al. Toughening polyamidoamine hydrogels through covalent grafting of short silk fibers. Molecules. 2022;27(22). doi:10.3390/molecules27227808
  • Li Y, Zhang T, Liu Q, et al. PEG-derivatized dual-functional nanomicelles for improved cancer therapy. Front Pharmacol. 2019;10:808–822. doi:10.3389/fphar.2019.00808
  • Fujiwara Y, Mukai H, Saeki T, et al. A multi-national, randomised, open-label, parallel, phase III non-inferiority study comparing NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br J Cancer. 2019;120(5):475–480. doi:10.1038/s41416-019-0391-z
  • Yang D, Liu X, Jiang X, et al. Effect of molecular weight of PGG-paclitaxel conjugates on in vitro and in vivo efficacy. J Controlled Release. 2012;161(1):124–131. doi:10.1016/j.jconrel.2012.04.010
  • Yang D, Van S, Liu J, et al. Physicochemical properties and biocompatibility of a polymer-paclitaxel conjugate for cancer treatment. Int J Nanomedicine. 2011;6:2557–2566. doi:10.2147/IJN.S25044
  • Yu J, Sun L, Zhou J, et al. Self-assembled tumor-penetrating peptide-modified poly(l-gamma-glutamylglutamine)-paclitaxel nanoparticles based on hydrophobic interaction for the treatment of glioblastoma. Bioconjug Chem. 2017;28(11):2823–2831. doi:10.1021/acs.bioconjchem.7b00519
  • Peng L, Yu L, Howell S, et al. Effects of solution concentration on the physicochemical properties of a polymeric anticancer therapeutic. Mol Pharm. 2012;9(1):37–47. doi:10.1021/mp2002208
  • Saleh T, Soudi T, Shojaosadati S. Redox responsive curcumin-loaded human serum albumin nanoparticles: preparation, characterization and in vitro evaluation. Int J Biol Macromol. 2018;114:759–766. doi:10.1016/j.ijbiomac.2018.03.085
  • Mahdavi Firouzabadi B, Gigliobianco MR, Joseph JM, et al. Design of nanoparticles in cancer therapy based on tumor microenvironment properties. Pharmaceutics. 2022;14(12):2708–2747. doi:10.3390/pharmaceutics14122708
  • Zhang P, Cui Y, Wang J, et al. Dual-stimuli responsive smart nanoprobe for precise diagnosis and synergistic multi-modalities therapy of superficial squamous cell carcinoma. J Nanobiotechnology. 2023;21(1):4–23. doi:10.1186/s12951-022-01759-1
  • Ruan S, Yin W, Chang J, et al. Acidic and hypoxic tumor microenvironment regulation by CaO2-loaded polydopamine nanoparticles. J Nanobiotechnology. 2022;20(1):544–558. doi:10.1186/s12951-022-01752-8
  • Huang S, Yeh N, Wang T, et al. Onion-like doxorubicin-carrying polymeric nanomicelles with tumor acidity-sensitive dePEGylation to expose positively-charged chitosan shell for enhanced cancer chemotherapy. Int J Biol Macromol. 2022;227:925–937. doi:10.1016/j.ijbiomac.2022.12.172
  • Zhang T, Hou X, Kong Y, et al. A hypoxia-responsive supramolecular formulation for imaging-guided photothermal therapy. Theranostics. 2022;12(1):396–409. doi:10.7150/thno.67036
  • Zhang T, Wu B, Akakuru O, et al. Hsp90 inhibitor-loaded IR780 micelles for mitochondria-targeted mild-temperature photothermal therapy in xenograft models of human breast cancer. Cancer Lett. 2021;500:41–50. doi:10.1016/j.canlet.2020.12.028
  • Machado MGC, de Oliveira MA, Lanna EG, et al. Photodynamic therapy with the dual-mode association of IR780 to PEG-PLA nanocapsules and the effects on human breast cancer cells. Biomed Pharm. 2022;145:112464. doi:10.1016/j.biopha.2021.112464
  • Kim S, Choi Y, Kim K. Coacervate-mediated novel pancreatic cancer drug aleuria aurantia lectin delivery for augmented anticancer therapy. Biomaterials Res. 2022;26(1):35–47. doi:10.1186/s40824-022-00282-6
  • Zhang L, Sun J, Huang W, et al. Hypoxia-triggered bioreduction of poly(N-oxide)-drug conjugates enhances tumor penetration and antitumor efficacy. J Am Chem Soc. 2023. doi:10.1021/jacs.2c10188
  • Cheng X, Wang L, Liu L, et al. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces. 2022;222:113099. doi:10.1016/j.colsurfb.2022.113099
  • Liang Y, Wang P, Li Y, et al. Multistage O2-producing liposome for MRI-guided synergistic chemodynamic/chemotherapy to reverse cancer multidrug resistance. Int J Pharm. 2022;631:122488. doi:10.1016/j.ijpharm.2022.122488
  • Kadkhoda J, Tarighatnia A, Nader N, et al. Targeting mitochondria in cancer therapy: insight into photodynamic and photothermal therapies. Life Sci. 2022;307:120898. doi:10.1016/j.lfs.2022.120898
  • Ding Y, Han J, Tian B, et al. Hepatoma-targeting and pH-sensitive nanocarriers based on a novel D-galactopyranose copolymer for efficient drug delivery. Int J Pharm. 2014;477(1–2):187–196. doi:10.1016/j.ijpharm.2014.10.024
  • Jiang D, Gao T, Liang S, et al. Lymph node delivery strategy enables the activation of cytotoxic T lymphocytes and natural killer cells to augment cancer immunotherapy. ACS Appl Mater Interfaces. 2021;13(19):22213–22224. doi:10.1021/acsami.1c03709
  • Hu J, Liang M, Ye M, et al. Reduction-triggered polycyclodextrin supramolecular nanocage induces immunogenic cell death for improved chemotherapy. Carbohydr Polym. 2023;301(Pt B):120365. doi:10.1016/j.carbpol.2022.120365
  • Yang S, Wu G, Li N, et al. A mitochondria-targeted molecular phototheranostic platform for NIR-II imaging-guided synergistic photothermal/photodynamic/immune therapy. J Nanobiotechnology. 2022;20(1):475–492. doi:10.1186/s12951-022-01679-0
  • Gao M, Huang X, Wu Z, et al. Synthesis of a versatile mitochondria-targeting small molecule for cancer near-infrared fluorescent imaging and radio/photodynamic/photothermal synergistic therapies. Mater Today Bio. 2022;15:100316. doi:10.1016/j.mtbio.2022.100316