1,685
Views
21
CrossRef citations to date
0
Altmetric
REVIEW

Biomedical Applications of Biosynthesized Nickel Oxide Nanoparticles

& ORCID Icon
Pages 4229-4251 | Received 31 Mar 2023, Accepted 10 Jul 2023, Published online: 27 Jul 2023

References

  • Ahmed S, Ahmad M, Swami BL, Ikram S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7(1):17–28. doi:10.1016/j.jare.2015.02.007
  • Akbar S, Tauseef I, Subhan F, et al. An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorg Nano Met. 2020;50(4):257–271. doi:10.1080/24701556.2019.1711121
  • Thakkar KN, Mhatre SS, Parikh RY. Biological synthesis of metallic nanoparticles. Nanomedicine. 2010;6(2):257–262. doi:10.1016/j.nano.2009.07.002
  • Kubik T, Bogunia-Kubik K, Sugisaka M. Nanotechnology on duty in medical applications. Curr Pharm Biotechnol. 2005;6(1):17–33. doi:10.2174/1389201053167248
  • Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10:507–517. doi:10.1007/s11051-007-9275-x
  • Dehghani F, Shahmoradi S, Naghizadeh M, et al. Magnetic graphite-ODA@ CoFe2O4: attempting to produce and characterize the development of an innovative nanocomposite to investigate its antimicrobial properties. Appl Phys A. 2022;128(3):250. doi:10.1007/s00339-022-05387-2
  • Xu Y, Li C, Ma X, et al. Long wavelength–emissive Ru (II) metallacycle–based photosensitizer assisting in vivo bacterial diagnosis and antibacterial treatment. Proc Natl Acad Sci. 2022;119(32):e2209904119. doi:10.1073/pnas.2209904119
  • Smith DM, Simon JK, Baker Jr JR Jr. Applications of nanotechnology for immunology. Nat Rev Immunol. 2013;13(8):592–605. doi:10.1038/nri3488
  • Abbasi M, Gholizadeh R, Kasaee SR, et al. An intriguing approach toward antibacterial activity of green synthesized Rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Sci Rep. 2023;13(1):5987. doi:10.1038/s41598-023-33095-1
  • Mosleh-Shirazi S, Kasaee SR, Dehghani F, et al. Investigation through the anticancer properties of green synthesized spinel ferrite nanoparticles in present and absent of laser photothermal effect. Ceram Int. 2023;49(7):11293–11301. doi:10.1016/j.ceramint.2022.11.329
  • Pakzad K, Alinezhad H, Nasrollahzadeh M. Green synthesis of Ni@ Fe3O4 and CuO nanoparticles using Euphorbia maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation. Ceram Int. 2019;45(14):17173–17182. doi:10.1016/j.ceramint.2019.05.272
  • Gebreslassie YT, Gebretnsae HG. Green and cost-effective synthesis of tin oxide nanoparticles: a review on the synthesis methodologies, mechanism of formation, and their potential applications. Nanoscale Res Lett. 2021;16(1):97. doi:10.1186/s11671-021-03555-6
  • Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials. 2005;26(13):1565–1573. doi:10.1016/j.biomaterials.2004.05.022
  • Chen F, Zhou W, Yao H, et al. Self-assembly of NiO nanoparticles in lignin-derived mesoporous carbons for supercapacitor applications. Green Chem. 2013;15(11):3057–3063. doi:10.1039/c3gc4108
  • Kannan K, Radhika D, Nikolova MP, Sadasivuni KK, Mahdizadeh H, Verma U. Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. Inorg Chem Commun. 2020;113:107755. doi:10.1016/j.inoche.2019.107755
  • Hotovy I, Huran J, Spiess L, Romanus H, Buc D, Kosiba R. NiO-based nanostructured thin films with Pt surface modification for gas detection. Thin Solid Films. 2006;515(2):658–661. doi:10.1016/j.tsf.2005.12.232
  • He J, Lindström H, Hagfeldt A, Lindquist S-E. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell. J Phys Chem B. 1999;103(42):8940–8943. doi:10.1021/jp991681r
  • Bandara J, Weerasinghe H. Solid-state dye-sensitized solar cell with p-type NiO as a hole collector. Sol Energy Mater Sol. 2005;85(3):385–390. doi:10.1016/j.solmat.2004.05.010
  • Rai AK, Anh LT, Park C-J, Kim J. Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceram Int. 2013;39(6):6611–6618. doi:10.1016/j.ceramint.2013.01.097
  • Cheng J, Liping D, Zhang B, Ping S, Guangyao M. Properties and microstructure of NiO/SDC materials for SOFC anode applications. Rare Met. 2007;26(2):110–117. doi:10.1016/S1001-0521(07)60169-7
  • Kaneko R, Chowdhury TH, Wu G, et al. Cobalt-doped nickel oxide nanoparticles as efficient hole transport materials for low-temperature processed perovskite solar cells. Sol Energy. 2019;181:243–250. doi:10.1016/j.solener.2019.01.097
  • Ichiyanagi Y, Wakabayashi N, Yamazaki J, et al. Magnetic properties of NiO nanoparticles. Physica B Condens Matter. 2003;329:862–863. doi:10.1016/S0921-4526(02)02578-4
  • Hosny NM. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron. 2011;30(3):470–476. doi:10.1016/j.poly.2010.11.020
  • Sasi B, Gopchandran K, Manoj P, Koshy P, Rao PP, Vaidyan V. Preparation of transparent and semiconducting NiO films. Vacuum. 2002;68(2):149–154. doi:10.1016/S0042-207X(02)00299-3
  • Jaji N-D, Lee HL, Hussin MH, Akil HM, Zakaria MR, Othman MBH. Advanced nickel nanoparticles technology: from synthesis to applications. Nanotechnol Rev. 2020;9(1):1456–1480. doi:10.1515/ntrev-2020-0109
  • Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2012;64:24–36. doi:10.1016/j.addr.2012.09.006
  • Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M. Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J Cluster Sci. 2019;30:1425–1434. doi:10.1007/s10876-019-01584-x
  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA. Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Biology. 2018;180:39–50. doi:10.1016/j.jphotobiol.2018.01.023
  • Bashir A, Razanamahandry LC, Nwanya AC, et al. Biosynthesis of NiO nanoparticles for photodegradation of free cyanide solutions under ultraviolet light. J Phys Chem Solids. 2019;134:133–140. doi:10.1016/j.jpcs.2019.05.048
  • Uddin S, Safdar LB, Anwar S, et al. Green synthesis of nickel oxide nanoparticles from Berberis balochistanica stem for investigating bioactivities. Molecules. 2021;26(6):1548. doi:10.3390/molecules26061548
  • Rafique M, Sadaf I, Rafique MS, Tahir MB. A review on green synthesis of silver nanoparticles and their applications. Artif Cells Nanomed Biotechnol. 2017;45(7):1272–1291. doi:10.1080/21691401.2016.1241792
  • Herlekar M, Barve S, Kumar R. Plant-mediated green synthesis of iron nanoparticles. J Nanopart. 2014;2014:1–9. doi:10.1155/2014/140614
  • Mittal J, Batra A, Singh A, Sharma MM. Phytofabrication of nanoparticles through plant as nanofactories. Adv Nat Sci. 2014;5(4):043002.
  • Ahmed S, Ikram S, Ikram S, Yudha S S. Biosynthesis of gold nanoparticles: a green approach. Biology. 2016;161:141–153. doi:10.1016/j.jphotobiol.2016.04.034
  • Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem. 2019;33(8):e4950. doi:10.1002/aoc.4950
  • Abbasi BA, Iqbal J, Mahmood T, Ahmad R, Kanwal S, Afridi S. Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: characterization and different biological applications. Mater Res Express. 2019;6(8):0850a7. doi:10.1088/2053-1591/ab23e1
  • Ramalingam R, Fazil MH, Verma NK, Arunachalam KD. Green synthesis, characterization and antibacterial evaluation of electrospun nickel oxide nanofibers. Mater Lett. 2019;256:126616. doi:10.1016/j.matlet.2019.126616
  • Karthik K, Shashank M, Revathi V, Tatarchuk T. Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol Cryst Liq Cryst. 2019;47:1926–1954. doi:10.1080/02678292.2019.1622158
  • Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. Biology. 2016;164:352–360. doi:10.1016/j.jphotobiol.2016.10.003
  • Lingaraju K, Naika HR, Nagabhushana H, Jayanna K, Devaraja S, Nagaraju G. Biosynthesis of nickel oxide nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab J Chem. 2020;13(3):4712–4719. doi:10.1016/j.arabjc.2019.11.003
  • Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif Cells Nanomed Biotechnol. 2018;46(4):838–852. doi:10.1080/21691401.2017.1345928
  • Iqbal J, Abbasi BA, Ahmad R, et al. Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (wall.) and investigation of its multiple in vitro biological potentials. Biomedicines. 2020;8(5):117. doi:10.3390/biomedicines8050117
  • Srihasam S, Thyagarajan K, Korivi M, Lebaka VR, Mallem SPR. Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules. 2020;10(1):89. doi:10.3390/biom10010089
  • Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere. 2011;83(4):510–516. doi:10.1016/j.chemosphere.2010.12.059
  • Sivagami M, Asharani I. Phyto-mediated Ni/NiO NPs and their catalytic applications-a short review. Inorg Chem Commun. 2022;145:110054. doi:10.1016/j.inoche.2022.110054
  • Narender SS, Varma VVS, Srikar CS, Ruchitha J, Varma PA, Praveen BVS. Nickel oxide nanoparticles: a brief review of their synthesis, characterization, and applications. Chem Eng Technol. 2022;45(3):397–409. doi:10.1002/ceat.202100442
  • Ahmad W, Bhatt SC, Verma M, Kumar V, Kim H. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environ Nanotechnol Monit Manag. 2022;18:100674. doi:10.1016/j.enmm.2022.100674
  • Imran Din M, Rani A. Recent advances in the synthesis and stabilization of nickel and nickel oxide nanoparticles: a green adeptness. Int J Anal Chem. 2016;2016:1–14. doi:10.1155/2016/3512145
  • Kumari A, Pandey A. A review on green synthesis of nickel oxide nanoparticles and their photocatalytic activities. Mater Today. 2023;2023:1.
  • Singh S, Mishra S, Srivastava R, Gopal R. Optical properties of selenium quantum dots produced with laser irradiation of water suspended Se nanoparticles. J Phys Chem C. 2010;114(41):17374–17384. doi:10.1021/jp105037w
  • Pareek V, Bhargava A, Gupta R, Jain N, Panwar J. Synthesis and applications of noble metal nanoparticles: a review. Adv Sci Eng Med. 2017;9(7):527–544. doi:10.1166/asem.2017.2027
  • Ahmadisoltansaraei K, Moghaddam J. Preparation of NiO nanoparticles from Ni (OH) 2· NiCO 3· 4H 2 O precursor by mechanical activation. Int J Miner Metall Mater. 2014;21:726–735. doi:10.1007/s12613-014-0964-z
  • Balamurugan S, Philip A, Kiruba V, Veluraja K. Simple and efficient way of synthesizing NiO nanoparticles by combustion followed by ball milling method. Nanosci Nanotechnol Lett. 2015;7(2):89–93. doi:10.1166/nnl.2015.1889
  • Ukoba K, Eloka-Eboka A, Inambao F. Review of nanostructured NiO thin film deposition using the spray pyrolysis technique. Renew Sust Energ Rev. 2018;82:2900–2915. doi:10.1016/j.rser.2017.10.041
  • Moravec P, Keskinen H, Jyrki M, Bakardjieva S, Levdansky VV, Levdansky VV. NiOx nanoparticle synthesis by chemical vapor deposition from nickel acetylacetonate. Mater Sci Appl. 2011;2(04):258. doi:10.4236/msa.2011.24033
  • Gondal M, Saleh TA, Drmosh Q. Synthesis of nickel oxide nanoparticles using pulsed laser ablation in liquids and their optical characterization. Appl Surf Sci. 2012;258(18):6982–6986. doi:10.1016/j.apsusc.2012.03.147
  • Khashan KS, Sulaiman GM, Hamad AH, Abdulameer FA, Hadi A. Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Appl Phys A. 2017;123:1–10. doi:10.1007/s00339-017-0826-4
  • Baig U, Khan A, Gondal MA, Dastageer MA, Falath WS. Laser induced anchoring of nickel oxide nanoparticles on polymeric graphitic carbon nitride sheets using pulsed laser ablation for efficient water splitting under visible light. Nanomaterials. 2020;10(6):1098. doi:10.3390/nano10061098
  • Reguig B, Khelil A, Cattin L, Morsli M, Bernede J. Properties of NiO thin films deposited by intermittent spray pyrolysis process. Appl Surf Sci. 2007;253(9):4330–4334. doi:10.1016/j.apsusc.2006.09.046
  • Wei Z, Qiao H, Yang H, Zhang C, Yan X. Characterization of NiO nanoparticles by anodic arc plasma method. J Alloys Compd. 2009;479(1–2):855–858. doi:10.1016/j.jallcom.2009.01.064
  • Safa S, Hejazi R, Rabbani M, Azimirad R. Hydrothermal synthesis of NiO nanostructures for photodegradation of 4-nitrophenol. Desalin Water Treat. 2016;57(46):21982–21989. doi:10.1080/19443994.2015.1125799
  • Parsaee Z. Synthesis of novel amperometric urea-sensor using hybrid synthesized NiO-NPs/GO modified GCE in aqueous solution of cetrimonium bromide. Ultrason Sonochem. 2018;44:120–128. doi:10.1016/j.ultsonch.2018.02.021
  • Qing Z, Haixia L, Huali L, Yu L, Huayong Z, Tianduo L. Solvothermal synthesis and photocatalytic properties of NiO ultrathin nanosheets with porous structure. Appl Surf Sci. 2015;328:525–530. doi:10.1016/j.apsusc.2014.12.077
  • Xu J, Wang M, Liu Y, Li J, Cui H. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv Powder Technol. 2019;30(4):861–868. doi:10.1016/j.apt.2019.01.016
  • Nathan T, Aziz A, Noor A, Prabaharan S. Nanostructured NiO for electrochemical capacitors: synthesis and electrochemical properties. J Solid State Electrochem. 2008;12:1003–1009. doi:10.1007/s10008-007-0465-3
  • Deng X, Chen Z. Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance. Mater Lett. 2004;58(3–4):276–280. doi:10.1016/S0167-577X(03)00469-5
  • Khairnar SD, Shrivastava VS. Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. J Taibah Univ Sci. 2019;13(1):1108–1118. doi:10.1080/16583655.2019.1686248
  • Tadic M, Nikolic D, Panjan M, Blake GR. Magnetic properties of NiO (nickel oxide) nanoparticles: blocking temperature and Neel temperature. J Alloys Compd. 2015;647:1061–1068. doi:10.1016/j.jallcom.2015.06.027
  • Zayim EO, Turhan I, Tepehan F, Ozer N. Sol–gel deposited nickel oxide films for electrochromic applications. Sol Energy Mater Sol. 2008;92(2):164–169. doi:10.1016/j.solmat.2007.03.034
  • Han D, Yang H, Shen C, Zhou X, Wang F. Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion. Powder Technol. 2004;147(1–3):113–116. doi:10.1016/j.powtec.2004.09.024
  • Zorkipli NNM, Kaus NHM, Mohamad AA. Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem. 2016;19:626–631. doi:10.1016/j.proche.2016.03.062
  • Yang Q, Sha J, Ma X, Yang D. Synthesis of NiO nanowires by a sol-gel process. Mater Lett. 2005;59(14–15):1967–1970. doi:10.1016/j.matlet.2005.02.037
  • J-f LI, Bo X, L-j DU, Rong Y, Liang TD. Preparation of nano-NiO particles and evaluation of their catalytic activity in pyrolyzing cellulose. J Fuel Chem Technol. 2008;36(1):42–47. doi:10.1016/S1872-5813(08)60010-9
  • Fereshteh Z, Salavati-Niasari M, Saberyan K, Hosseinpour-Mashkani SM, Tavakoli F. Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor. J Cluster Sci. 2012;23:577–583. doi:10.1007/s10876-012-0477-8
  • El-Kemary M, Nagy N, El-Mehasseb I. Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process. 2013;16(6):1747–1752. doi:10.1016/j.mssp.2013.05.018
  • Abdallah A, Basma H, Awad R. Preparation, characterization, and application of nickel oxide nanoparticles in glucose and lactose biosensors. Mod Appl Sci. 2019;13(6):99. doi:10.5539/mas.v13n6p99
  • Srikesh G, Nesaraj AS. Synthesis and characterization of phase pure NiO nanoparticles via the combustion route using different organic fuels for electrochemical capacitor applications. J Electrochem Sci Technol. 2015;6(1):16–25. doi:10.33961/JECST.2015.6.1.16
  • Jain N, Bhargava A, Majumdar S, Tarafdar J, Panwar J. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale. 2011;3(2):635–641. doi:10.1039/C0NR00656D
  • Thema F, Manikandan E, Gurib-Fakim A, Maaza M. Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. J Alloys Compd. 2016;657:655–661. doi:10.1016/j.jallcom.2015.09.227
  • Mittal AK, Bhaumik J, Kumar S, Banerjee UC. Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci. 2014;415:39–47. doi:10.1016/j.jcis.2013.10.018
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31(2):346–356. doi:10.1016/j.biotechadv.2013.01.003
  • Dauthal P, Mukhopadhyay M. Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res. 2016;55(36):9557–9577. doi:10.1021/acs.iecr.6b00861
  • Sood R, Chopra DS. Metal–plant frameworks in nanotechnology: an overview. Phytomedicine. 2018;50:148–156. doi:10.1016/j.phymed.2017.08.025
  • Khan SA, Shahid S, Ayaz A, Alkahtani J, Elshikh MS, Riaz T. Phytomolecules-coated NiO nanoparticles synthesis using abutilon indicum leaf extract: antioxidant, antibacterial, and anticancer activities. Int J Nanomedicine. 2021;16:1757. doi:10.2147/IJN.S294012
  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong S. Rambutan (Nephelium lappaceum L.) peel extract assisted biomimetic synthesis of nickel oxide nanocrystals. Mater Lett. 2014;128:170–174. doi:10.1016/j.matlet.2014.04.112
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13(10):2638–2650. doi:10.1039/c1gc15386b
  • Helan V, Prince JJ, Al-Dhabi NA, et al. Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys. 2016;6:712–718. doi:10.1016/j.rinp.2016.10.005
  • Wardani M, Yulizar Y, Abdullah I, Bagus Apriandanu DO. Synthesis of NiO nanoparticles via green route using Ageratum conyzoides L. leaf extract and their catalytic activity. IOP Conference Series: Materials Science and Engineering; IOP Publishing; 2019.
  • Mayedwa N, Mongwaketsi N, Khamlich S, Kaviyarasu K, Matinise N, Maaza M. Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties & mechanism of formation. Appl Surf Sci. 2018;446:266–272. doi:10.1016/j.apsusc.2017.12.116
  • Kumar CR, Betageri VS, Nagaraju G, Pujar G, Suma B, Latha M. Photocatalytic, nitrite sensing and antibacterial studies of facile bio-synthesized nickel oxide nanoparticles. J Sci. 2020;5(1):48–55.
  • Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J. Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog. 2017;111:375–387. doi:10.1016/j.micpath.2017.09.019
  • Kganyago P, Mahlaule-Glory L, Mathipa M, et al. Synthesis of NiO nanoparticles via a green route using Monsonia burkeana: the physical and biological properties. Biology. 2018;182:18–26. doi:10.1016/j.jphotobiol.2018.03.016
  • Adinaveen T, Karnan T, Selvakumar SAS. Photocatalytic and optical properties of NiO added Nephelium lappaceum L. peel extract: an attempt to convert waste to a valuable product. Heliyon. 2019;5(5):e01751. doi:10.1016/j.heliyon.2019.e01751
  • Zahra T, Ahmad KS. Structural, optical and electrochemical studies of organo-templated wet synthesis of cubic shaped nickel oxide nanoparticles. Optik. 2020;205:164241. doi:10.1016/j.ijleo.2020.164241
  • Sabouri Z, Fereydouni N, Akbari A, et al. Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. 2020;39:1134–1144. doi:10.1007/s12598-019-01333-z
  • Nasseri M, Ahrari F, Zakerinasab B. A green biosynthesis of NiO nanoparticles using aqueous extract of Tamarix serotina and their characterization and application. Appl Organomet Chem. 2016;30(12):978–984. doi:10.1002/aoc.3530
  • Haider A, Ijaz M, Ali S, et al. Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Res Lett. 2020;15:1–11. doi:10.1186/s11671-020-3283-5
  • Gebretinsae H, Tsegay M, Nuru Z. Biosynthesis of nickel oxide (NiO) nanoparticles from cactus plant extract. Mater Today. 2020;2020:1.
  • Li X, Xu H, Chen Z-S, Chen G. Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. 2011;2011:1–16. doi:10.1155/2011/910539
  • Sathyavathi S, Manjula A, Rajendhran J, Gunasekaran P. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresour Technol. 2014;165:270–273. doi:10.1016/j.biortech.2014.03.031
  • Salvadori MR, Nascimento CAO, Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci Rep. 2014;4(1):1–6. doi:10.1038/srep06404
  • Salvadori MR, Ando RA, Oller Nascimento CA, Correa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One. 2015;10(6):e0129799. doi:10.1371/journal.pone.0129799
  • Ullah M, Naz A, Mahmood T, Siddiq M, Bano A. Biochemical synthesis of nickel & cobalt oxide nano-particles by using biomass waste. Int J Enhanc Res Sci Technol Eng. 2014;3:415–422.
  • Salvadori MR, Ando RA, Muraca D, Knobel M, Nascimento CAO, Corrêa B. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Adv. 2016;6(65):60683–60692. doi:10.1039/C6RA07274G
  • Moavi J, Buazar F, Sayahi MH. Algal magnetic nickel oxide nanocatalyst in accelerated synthesis of pyridopyrimidine derivatives. Sci Rep. 2021;11(1):1–14. doi:10.1038/s41598-021-85832-z
  • Singh Y, Sodhi RS, Singh PP, Kaushal S. Biosynthesis of NiO nanoparticles using Spirogyra sp. cell-free extract and their potential biological applications. Mater Adv. 2022;3(12):4991–5000. doi:10.1039/D2MA00114D
  • Devi HS, Singh TD, Singh NR. Green synthesis and catalytic activity of composite NiO-Ag nanoparticles for photocatalytic degradation of dyes. J Indian Chem Soc. 2017;94(2):159–169.
  • Suvith V, Devu V, Philip D. Tannic acid mediated synthesis of nanostructured NiO and SnO 2 for catalytic degradation of methylene blue. Opt Quantum Electron. 2020;52:1–17. doi:10.1007/s11082-019-2131-2
  • Baranwal K, Dwivedi LM, Singh V, Singh V. Guar gum mediated synthesis of NiO nanoparticles: an efficient catalyst for reduction of nitroarenes with sodium borohydride. Int J Biol Macromol. 2018;120:2431–2441. doi:10.1016/j.ijbiomac.2018.09.013
  • Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chem Lett Rev. 2021;14(2):404–414. doi:10.1080/17518253.2021.1923824
  • Choo CK, Goh TL, Shahcheraghi L, et al. Synthesis and characterization of NiO nano‐spheres by templating on chitosan as a green precursor. J Am Ceram Soc. 2016;99(12):3874–3882. doi:10.1111/jace.14411
  • Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron. 2020;178:114351. doi:10.1016/j.poly.2020.114351
  • Williams L, Prasad AR, Sowmya P, Joseph A. Characterization and temperature dependent DC conductivity study of bio templated nickel oxide nanoparticles (NiO) and their composites using polyaniline (PANI). Mater Chem Phys. 2020;242:122469. doi:10.1016/j.matchemphys.2019.122469
  • Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M. Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects. J Mol Struct. 2019;1191:101–109. doi:10.1016/j.molstruc.2019.04.075
  • Raveendran P, Fu J, Wallen SL. Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc. 2003;125(46):13940–13941. doi:10.1021/ja029267j
  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanopart. 2014;2014. doi:10.1155/2014/302429
  • Makarov V, Love A, Sinitsyna O, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 2014;6(20):35–44. doi:10.32607/20758251-2014-6-1-35-44
  • Diallo A, Kaviyarasu K, Ndiaye S, et al. Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem Lett Rev. 2018;11(2):166–175. doi:10.1080/17518253.2018.1447604
  • Rai M, Duran N. Metal Nanoparticles in Microbiology. Springer Science & Business Media; 2011.
  • Engler AC, Wiradharma N, Ong ZY, Coady DJ, Hedrick JL, Yang -Y-Y. Emerging trends in macromolecular antimicrobials to fight multi-drug-resistant infections. Nano Today. 2012;7(3):201–222. doi:10.1016/j.nantod.2012.04.003
  • Nadeem M, Abbasi BH, Younas M, Ahmad W, Khan T. A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev. 2017;10(4):216–227. doi:10.1080/17518253.2017.1349192
  • Gordon T, Perlstein B, Houbara O, Felner I, Banin E, Margel S. Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf. 2011;374(1–3):1–8. doi:10.1016/j.colsurfa.2010.10.015
  • Sonohara R, Muramatsu N, Ohshima H, Kondo T. Difference in surface properties between Escherichia coli and Staphylococcus aureus as revealed by electrophoretic mobility measurements. Biophys Chem. 1995;55(3):273–277. doi:10.1016/0301-4622(95)00004-H
  • Espitia PJP, Soares Nd FF, Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioproc Tech. 2012;5:1447–1464. doi:10.1007/s11947-012-0797-6
  • Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M. Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag. 2018;9:29–36. doi:10.1016/j.enmm.2017.11.005
  • Vijaya Kumar P, Jafar Ahamed A, Karthikeyan M. Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models. SN Appl Sci. 2019;1:1–15. doi:10.1007/s42452-019-1113-0
  • Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol. 2021;37:1–30. doi:10.1007/s11274-021-03070-x
  • Makabenta JMV, Nabawy A, C-H L, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19(1):23–36. doi:10.1038/s41579-020-0420-1
  • Jeong M-J, Jeon S, H-S Y, et al. Exposure to nickel oxide nanoparticles induces acute and chronic inflammatory responses in rat lungs and perturbs the lung microbiome. Int J Environ Res Public Health. 2022;19(1):522. doi:10.3390/ijerph19010522
  • Shwetha UR, Rajith Kumar CR, Virupaxappa S, et al. Biogenic synthesis of NiO nanoparticles using areca catechu leaf extract and their antidiabetic and cytotoxic effects. Molecules. 2021;26(9):2448. doi:10.3390/molecules26092448
  • Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M. Tragacanth-mediate synthesis of NiO nanosheets for cytotoxicity and photocatalytic degradation of organic dyes. Bioprocess Biosyst Eng. 2020;43:1209–1218. doi:10.1007/s00449-020-02315-7
  • Zhang Y, Mahdavi B, Mohammadhosseini M, et al. Green synthesis of NiO nanoparticles using Calendula officinalis extract: chemical characterization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab J Chem. 2021;14(5):103105. doi:10.1016/j.arabjc.2021.103105
  • Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem. 2009;78:857–902. doi:10.1146/annurev.biochem.78.081307.110540
  • Bethu MS, Netala VR, Domdi L, Tartte V, Janapala VR. Potential anticancer activity of biogenic silver nanoparticles using leaf extract of Rhynchosia suaveolens: an insight into the mechanism. Artif Cells Nanomed Biotechnol. 2018;46(sup1):104–114. doi:10.1080/21691401.2017.1414824
  • Patil MP, Kim G-D. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79–92. doi:10.1007/s00253-016-8012-8
  • Kim YJ, Perumalsamy H, Castro-Aceituno V, et al. Photoluminescent and self-assembled hyaluronic acid-zinc oxide-ginsenoside Rh2 nanoparticles and their potential caspase-9 apoptotic mechanism towards cancer cell lines. Int J Nanomedicine. 2019;14:8195–8208. doi:10.2147/IJN.S221328
  • Horie M, Nishio K, Fujita K, et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem Res Toxicol. 2009;22(3):543–553. doi:10.1021/tx800289z
  • Götte M, Berghuis A, Matlashewski G, Wainberg MA, Sheppard D. Handbook of Antimicrobial Resistance. Springer; 2017.
  • Haritha V, Gowri S, Janarthanan B, Faiyazuddin M, Karthikeyan C, Sharmila S. Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. Inorg Chem Commun. 2022;144:109930. doi:10.1016/j.inoche.2022.109930
  • Jahangirian H, Lemraski EG, Webster TJ, Rafiee-Moghaddam R, Abdollahi Y. A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomedicine. 2017;12:2957. doi:10.2147/IJN.S127683
  • Lam P-L, Wong W-Y, Bian Z, Chui C-H, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine. 2017;12(4):357–385. doi:10.2217/nnm-2016-0305
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):1–33. doi:10.1186/s12951-017-0328-8
  • Navya P, Kaphle A, Srinivas S, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6:1–30. doi:10.1186/s40580-018-0172-z
  • Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized metallic nanoparticles—between nanomedicine and toxicology. A brief review of 2019′ s findings. Materials. 2020;13(3):574. doi:10.3390/ma13030574