558
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma

ORCID Icon, , ORCID Icon &
Pages 3489-3508 | Received 09 Mar 2023, Accepted 19 Jun 2023, Published online: 29 Jun 2023

References

  • Dobrovolskaia M, Shurin M, Kagan V, Shvedova A. Ins and outs in environmental and occupational safety studies of asthma and engineered nanomaterials. ACS Nano. 2017;11(8):7565–7571. doi:10.1021/acsnano.7b04916
  • Alsaleh N, Brown J, Hu L, Qiu L, Zhu L. Engineered nanomaterials and type I allergic hypersensitivity reactions. Front Immunol. 2020;11:11. doi:10.3389/fimmu.2020.00222
  • Meldrum K, Guo C, Marczylo E, Gant T, Smith R, Leonard M. Mechanistic insight into the impact of nanomaterials on asthma and allergic airway disease. Part Fibre Toxicol. 2017;14:14. doi:10.1186/s12989-017-0228-y
  • Bara I, Ozier A, de Lara J, Marthan R, Berger P. Pathophysiology of bronchial smooth muscle remodelling in asthma. Eur Respir J. 2010;36(5):1174–1184. doi:10.1183/09031936.00019810
  • Sreedharan S, Zouganelis G, Drake S, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. J Toxicol Environ Health-Part B-Crit Rev. 2022. doi:10.1080/10937404.2022.2153456
  • Braman S. The global burden of asthma. Chest. 2006;130(1):4S–12S. doi:10.1378/chest.130.1_suppl.4S
  • Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13:13. doi:10.1186/s11671-018-2457-x
  • Sandhiya S, Dkhar S, Surendiran A. Emerging trends of nanomedicine - an overview. Fundam Clin Pharmacol. 2009;23(3):263–269. doi:10.1111/j.1472-8206.2009.00692.x
  • Chang C. The immune effects of naturally occurring and synthetic nanoparticles. J Autoimmun. 2010;34(3):J234–J246. doi:10.1016/j.jaut.2009.11.009
  • Solano R, Patino-Ruiz D, Tejeda-Benitez L, Herrera A. Metal- and metal/oxide-based engineered nanoparticles and nanostructures: a review on the applications, nanotoxicological effects, and risk control strategies. Environ Sci Pollut Res. 2021;28(14):16962–16981. doi:10.1007/s11356-021-12996-6
  • Elsaesser A, Howard CV. Toxicology of nanoparticles. Adv Drug Deliv Rev. 2012;64(2):129–137. doi:10.1016/j.addr.2011.09.001
  • Yang W, Wang L, Mettenbrink EM, DeAngelis PL, Wilhelm S. Nanoparticle toxicology. Annu Rev Pharmacol Toxicol. 2021;61:269–289.
  • Verdon R, Stone V, Murphy F, et al. The application of existing genotoxicity methodologies for grouping of nanomaterials: towards an integrated approach to testing and assessment. Part Fibre Toxicol. 2022;19(1). doi:10.1186/s12989-022-00476-9
  • Ierodiakonou D, Zanobetti A, Coull B, et al. Ambient air pollution, lung function, and airway responsiveness in asthmatic children. J Allergy Clin Immunol. 2016;137(2):390–399. doi:10.1016/j.jaci.2015.05.028
  • Xia T, Zhu Y, Mu L, Zhang Z, Liu S. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century. Natl Sci Rev. 2016;3(4):416–429. doi:10.1093/nsr/nww064
  • Li N, Georas S, Alexis N, et al. A work group report on ultrafine particles (American Academy of Allergy, Asthma & Immunology): why ambient ultrafine and engineered nanoparticles should receive special attention for possible adverse health outcomes in human subjects. J Allergy Clin Immunol. 2016;138(2):386–396. doi:10.1016/j.jaci.2016.02.023
  • Kim K, Jahan S, Kabir E. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int. 2013;59:41–52. doi:10.1016/j.envint.2013.05.007
  • Chen CM. CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol. 2006;57(3):359–377. doi:10.1002/asi.20317
  • Tan L, Wang X, Yuan K, et al. Structural and temporal dynamics analysis on drug-eluting stents: history, research hotspots and emerging trends. Bioact Mater. 2023;23:170–186. doi:10.1016/j.bioactmat.2022.09.009
  • Wang M, Yao G, Sun Y, Yang Y, Deng R. Exposure to construction dust and health impacts - A review. Chemosphere. 2023;311(Pt 1):136990. doi:10.1016/j.chemosphere.2022.136990
  • de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine carbon black particles cause early airway inflammation and have adjuvant activity in a mouse allergic airway disease model. Toxicol Sci. 2005;87(2):409–418. doi:10.1093/toxsci/kfi255
  • Ihrie MD, Taylor-Just AJ, Walker NJ, et al. Inhalation exposure to multi-walled carbon nanotubes alters the pulmonary allergic response of mice to house dust mite allergen. Inhal Toxicol. 2019;31(5):192–202. doi:10.1080/08958378.2019.1643955
  • Carvalho S, Ferrini M, Herritt L, Holian A, Jaffar Z, Roberts K. Multi-walled carbon nanotubes augment allergic airway eosinophilic inflammation by promoting cysteinyl leukotriene production. Front Pharmacol. 2018;9. doi:10.3389/fphar.2018.00585
  • Shipkowski KA, Taylor AJ, Thompson EA, et al. An allergic lung microenvironment suppresses carbon nanotube-induced inflammasome activation via stat6-dependent inhibition of caspase-1. PLoS One. 2015;10(6):e0128888. doi:10.1371/journal.pone.0128888
  • Thompson EA, Sayers BC, Glista-Baker EE, et al. Role of signal transducer and activator of transcription 1 in murine allergen-induced airway remodeling and exacerbation by carbon nanotubes. Am J Respir Cell Mol Biol. 2015;53(5):625–636. doi:10.1165/rcmb.2014-0221OC
  • Ronzani C, Casset A, Pons F. Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammation and remodeling and in increased production of epithelium-derived innate cytokines in a mouse model of asthma. Arch Toxicol. 2014;88(2):489–499. doi:10.1007/s00204-013-1116-3
  • Sayers BC, Taylor AJ, Glista-Baker EE, et al. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. Am J Respir Cell Mol Biol. 2013;49(4):525–535. doi:10.1165/rcmb.2013-0019OC
  • Mizutani N, Nabe T, Yoshino S. Exposure to multiwalled carbon nanotubes and allergen promotes early- and late-phase increases in airway resistance in mice. Biol Pharm Bull. 2012;35(12):2133–2140. doi:10.1248/bpb.b12-00357
  • Ichiro IK, Koike E, Yanagisaw R, Hirano S, Nishikawa M, Takano H. Effects of multi-walled carbon nanotubes on a murine allergic airway inflammation model. Toxicol Appl Pharmacol. 2009;237(3):306–316. doi:10.1016/j.taap.2009.04.003
  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 2009;40(3):349–358. doi:10.1165/rcmb.2008-0276OC
  • Li J, Li L, Chen H, et al. Application of vitamin E to antagonize SWCNTs-induced exacerbation of allergic asthma. Sci Rep. 2014:4. doi:10.1038/srep04275
  • Nygaard UC, Samuelsen M, Marioara CD, Lovik M. Carbon nanofibers have IgE adjuvant capacity but are less potent than nanotubes in promoting allergic airway responses. Biomed Res Int. 2013;2013:1–12. doi:10.1155/2013/476010
  • Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: possible role of oxidative stress. Free Radic Biol Med. 2010;48(7):924–934. doi:10.1016/j.freeradbiomed.2010.01.013
  • Lindner K, Webering S, Stroebele M, et al. Low dose carbon black nanoparticle exposure does not aggravate allergic airway inflammation in mice irrespective of the presence of surface polycyclic aromatic hydrocarbons. Nanomaterials. 2018;8(4):213. doi:10.3390/nano8040213
  • Kroker M, Sydlik U, Autengruber A, et al. Preventing carbon nanoparticle-induced lung inflammation reduces antigen-specific sensitization and subsequent allergic reactions in a mouse model. Part Fibre Toxicol. 2015;12:12. doi:10.1186/s12989-015-0093-5
  • Shang S, Li J, Zhao Y, et al. Oxidized graphene-aggravated allergic asthma is antagonized by antioxidant vitamin E in Balb/c mice. Environ Sci Pollut Res. 2017;24(2):1784–1793. doi:10.1007/s11356-016-7903-7
  • Shurin MR, Yanamala N, Kisin ER, et al. Graphene oxide attenuates th2-type immune responses, but augments airway remodeling and hyperresponsiveness in a murine model of asthma. ACS Nano. 2014;8(6):5585–5599. doi:10.1021/nn406454u
  • Norton SK, Wijesinghe DS, Dellinger A, et al. Epoxyeicosatrienoic acids are involved in the C-70 fullerene derivative-induced control of allergic asthma. J Allergy Clin Immunol. 2012;130(3):761–+. doi:10.1016/j.jaci.2012.04.023
  • Ryan JJ, Bateman HR, Stover A, et al. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007;179(1):665–672. doi:10.4049/jimmunol.179.1.665
  • Yang YS, Cao MD, Wang A, et al. Nano-silica particles synergistically IgE-mediated mast cell activation exacerbating allergic inflammation in mice. Front Immunol. 2022;13:911300. doi:10.3389/fimmu.2022.911300
  • Ko JW, Shin NR, Je-Oh L, et al. Silica dioxide nanoparticles aggravate airway inflammation in an asthmatic mouse model via NLRP3 inflammasome activation. Regul Toxicol Pharmacol. 2020:112. doi:10.1016/j.yrtph.2020.104618
  • Han H, Park YH, Park HJ, et al. Toxic and adjuvant effects of silica nanoparticles on ovalbumin-induced allergic airway inflammation in mice. Respir Res. 2016;17:17. doi:10.1186/s12931-016-0376-x
  • Park HJ, Sohn JH, Kim YJ, et al. Acute exposure to silica nanoparticles aggravate airway inflammation: different effects according to surface characteristics. Exp Mol Med. 2015:47. doi:10.1038/emm.2015.50
  • Brandenberger C, Rowley NL, Jackson-Humbles DN, et al. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice. Part Fibre Toxicol. 2013;10:10. doi:10.1186/1743-8977-10-26
  • Yoshida T, Yoshioka Y, Fujimura M, et al. Promotion of allergic immune responses by intranasally-administrated nanosilica particles in mice. Nanoscale Res Lett. 2011;6:6. doi:10.1186/1556-276X-6-195
  • Han B, Guo J, Abrahaley T, et al. Adverse effect of nano-silicon dioxide on lung function of rats with or without ovalbumin immunization. PLoS One. 2011;6(2). doi:10.1371/journal.pone.0017236
  • Chuang HC, Hsiao TC, Wu CK, et al. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomedicine. 2013;8:4495–4506. doi:10.2147/IJN.S52239
  • Su CL, Chen TT, Chang CC, et al. Comparative proteomics of inhaled silver nanoparticles in healthy and allergen provoked mice. Int J Nanomedicine. 2013;8:2783–2799. doi:10.2147/IJN.S46997
  • Jang S, Park JW, Cha HR, et al. Silver nanoparticles modify VEGF signaling pathway and mucus hypersecretion in allergic airway inflammation. Int J Nanomedicine. 2012;7:1329–1343. doi:10.2147/IJN.S27159
  • Park HS, Kim KH, Jang S, et al. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine. 2010;5:505–515. doi:10.2147/IJN.S11664
  • Omlor AJ, Le DD, Schlicker J, et al. Local effects on airway inflammation and systemic uptake of 5 nm pegylated and citrated gold nanoparticles in asthmatic mice. Small. 2017;13(10):1603070. doi:10.1002/smll.201603070
  • Barreto E, Serra MF, Dos Santos RV, et al. Local administration of gold nanoparticles prevents pivotal pathological changes in murine models of atopic asthma. J Biomed Nanotechnol. 2015;11(6):1038–1050. doi:10.1166/jbn.2015.2024
  • Hussain S, Vanoirbeek JAJ, Luyts K, et al. Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J. 2011;37(2):299–309. doi:10.1183/09031936.00168509
  • Lim JO, Lee SJ, Kim WI, et al. Titanium dioxide nanoparticles exacerbate allergic airway inflammation via TXNIP upregulation in a mouse model of asthma. Int J Mol Sci. 2021;22(18):9924. doi:10.3390/ijms22189924
  • Harfoush SA, Hannig M, Le DD, et al. High-dose intranasal application of titanium dioxide nanoparticles induces the systemic uptakes and allergic airway inflammation in asthmatic mice. Respir Res. 2020;21(1). doi:10.1186/s12931-020-01386-0
  • Kim BG, Park MK, Lee PH, et al. Effects of nanoparticles on neuroinflammation in a mouse model of asthma. Respir Physiol Neurobiol. 2020:271. doi:10.1016/j.resp.2019.103292
  • Kim BG, Lee PH, Lee SH, Park MK, Jang AS. Effect of TiO2 nanoparticles on inflammasome-mediated airway inflammation and responsiveness. Allergy Asthma Immunol Res. 2017;9(3):257–264. doi:10.4168/aair.2017.9.3.257
  • Mishra V, Baranwal V, Mishra RK, Sharma S, Paul B, Pandey AC. Titanium dioxide nanoparticles augment allergic airway inflammation and Socs3 expression via NF-kappa B pathway in murine model of asthma. Biomaterials. 2016;92:90–102. doi:10.1016/j.biomaterials.2016.03.016
  • Gustafsson A, Jonasson S, Sandstrom T, Lorentzen JC, Bucht A. Genetic variation influences immune responses in sensitive rats following exposure to TiO2 nanoparticles. Toxicology. 2014;326:74–85. doi:10.1016/j.tox.2014.10.004
  • Scarino A, Noel A, Renzi PM, et al. Impact of emerging pollutants on pulmonary inflammation in asthmatic rats: ethanol vapors and agglomerated TiO2 nanoparticles. Inhal Toxicol. 2012;24(8):528–538. doi:10.3109/08958378.2012.696741
  • Rossi EM, Pylkkanen L, Koivisto AJ, et al. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part Fibre Toxicol. 2010;7. doi:10.1186/1743-8977-7-35
  • Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol. 2010;106(2):114–117. doi:10.1111/j.1742-7843.2009.00473.x
  • Huang KL, Chang HL, Tsai FM, Lee YH, Wang CH, Cheng TJ. The effect of the inhalation of and topical exposure to zinc oxide nanoparticles on airway inflammation in mice. Toxicol Appl Pharmacol. 2019;384. doi:10.1016/j.taap.2019.114787
  • Huang KL, Lee YH, Chen HI, Liao HS, Chiang BL, Cheng TJ. Zinc oxide nanoparticles induce eosinophilic airway inflammation in mice. J Hazard Mater. 2015;297:304–312. doi:10.1016/j.jhazmat.2015.05.023
  • Gustafsson A, Bergstrom U, Agren L, Osterlund L, Sandstrom T, Bucht A. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles. Toxicol Appl Pharmacol. 2015;288(1):1–11. doi:10.1016/j.taap.2015.07.001
  • Ban M, Langonne I, Huguet N, Guichard Y, Goutet M. Iron oxide particles modulate the ovalbumin-induced Th2 immune response in mice. Toxicol Lett. 2013;216(1):31–39. doi:10.1016/j.toxlet.2012.11.003
  • Cui H, Huang J, Lu M, et al. Antagonistic effect of vitamin E on nAl(2)O(3)-induced exacerbation of Th2 and Th17-mediated allergic asthma via oxidative stress. Environ Pollut. 2019;252:1519–1531. doi:10.1016/j.envpol.2019.06.092
  • Ilves M, Kinaret PAS, Ndika J, et al. Surface PEGylation suppresses pulmonary effects of CuO in allergen-induced lung inflammation. Part Fibre Toxicol. 2019;16. doi:10.1186/s12989-019-0309-1
  • Roach KA, Anderson SE, Stefaniak AB, et al. Surface area- and mass-based comparison of fine and ultrafine nickel oxide lung toxicity and augmentation of allergic response in an ovalbumin asthma model. Inhal Toxicol. 2019;31(8):299–324. doi:10.1080/08958378.2019.1680775
  • Meldrum K, Robertson SB, Roemer I, et al. Cerium dioxide nanoparticles exacerbate house dust mite induced type II airway inflammation. Part Fibre Toxicol. 2018;15:15. doi:10.1186/s12989-018-0261-5
  • Deng R, Lin D, Zhu L, et al. Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology. 2017;11(5):591–612. doi:10.1080/17435390.2017.1343404
  • Deng R, Yang K, Lin D. Pentachlorophenol and ciprofloxacin present dissimilar joint toxicities with carbon nanotubes to Bacillus subtilis. Environ Pollut. 2021;270. doi:10.1016/j.envpol.2020.116071
  • Deng R, Ma P, Li B, Wu Y, Yang X. Development of allergic asthma and changes of intestinal microbiota in mice under high humidity and/or carbon black nanoparticles. Ecotoxicol Environ Saf. 2022;241:113786. doi:10.1016/j.ecoenv.2022.113786
  • Wang M, Deng R. Effects of carbon black nanoparticles and high humidity on the lung metabolome in Balb/c mice with established allergic asthma. Environ Sci Pollut Res. 2022;29(43):65100–65111. doi:10.1007/s11356-022-20349-0
  • Meldrum K, Robertson S, Romer I, et al. Diesel exhaust particle and dust mite induced airway inflammation is modified by cerium dioxide nanoparticles. Environ Toxicol Pharmacol. 2020:73. doi:10.1016/j.etap.2019.103273
  • Layachi S, Rogerieux F, Robidel F, Lacroix G, Bayat S. Effect of combined nitrogen dioxide and carbon nanoparticle exposure on lung function during ovalbumin sensitization in brown Norway rat. PLoS One. 2012;7(9). doi:10.1371/journal.pone.0045687