263
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Novel Airway-Organoid Model Based on a Nano-Self-Assembling Peptide: Construction and Application in Adenovirus Infection Studies

, ORCID Icon, , , , , & ORCID Icon show all
Pages 5225-5241 | Received 23 Apr 2023, Accepted 28 Aug 2023, Published online: 13 Sep 2023

References

  • Louz D, Bergmans HE, Loos BP, et al. Animal models in virus research: their utility and limitations. Crit Rev Microbiol. 2013;39(4):325–361. doi:10.3109/1040841X.2012.711740
  • Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol. 2006;7(3):211–224. doi:10.1038/nrm1858
  • Rosellini A, Freer G, Quaranta P, et al. Enhanced in vitro virus expression using 3- dimensional cell culture spheroids for infection. J Virol Methods. 2019;265:99–104. doi:10.1016/j.jviromet.2018.12.017
  • Imle A, Kumberger P, Schnellbacher ND, et al. Experimental and computational analyses reveal that environmental restrictions shape HIV-1 spread in 3D cultures. Nat Commun. 2019;10(1):2144. doi:10.1038/s41467-019-09879-3
  • Koban R, Lam T, Schwarz F, et al. Simplified bioprinting-based 3D cell culture infection models for virus detection. Viruses. 2020;12(11):1298. doi:10.3390/v12111298
  • Pei R, Feng J, Zhang Y, et al. Host metabolism dysregulation and cell tropism identification in human airway and alveolar organoids upon SARS-CoV-2 infection. Protein Cell. 2021;12(9):717–733. doi:10.1007/s13238-020-00811-w
  • Dubich T, Dittrich A, Bousset K, et al. 3D culture conditions support Kaposi’s sarcoma herpesvirus (KSHV) maintenance and viral spread in endothelial cells. J Mol Med. 2021;99(3):425–438. doi:10.1007/s00109-020-02020-8
  • Chen YX, Xie GC, Pan D, et al. Three-dimensional culture of human airway epithelium in matrigel for evaluation of human rhinovirus c and bocavirus infections. Biomed Environ Sci. 2018;31(2):136–145. doi:10.3967/bes2018.016
  • Li Z, Yue M, Liu Y, et al. Advances of engineered hydrogel organoids within the stem cell field: a systematic review. Gels. 2022;8(6):379. doi:10.3390/gels8060379
  • Tang XY, Wu S, Wang D, et al. Human organoids in basic research and clinical applications. Signal Transduct Target Ther. 2022;7(1):168. doi:10.1038/s41392-022-01024-9
  • Ogundipe VML, Groen AH, Hosper N, et al. Generation and differentiation of adult tissue-derived human thyroid organoids. Stem Cell Rep. 2021;16(4):913–925. doi:10.1016/j.stemcr.2021.02.011
  • Tao J, Calvisi DF, Ranganathan S, et al. Activation of beta-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology. 2014;147(3):690–701. doi:10.1053/j.gastro.2014.05.004
  • Tan Q, Choi KM, Sicard D, et al. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials. 2017;113:118–132. doi:10.1016/j.biomaterials.2016.10.046
  • Wilkinson DC, Alva-Ornelas JA, Sucre JM, et al. Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling. Stem Cells Transl Med. 2017;6(2):622–633. doi:10.5966/sctm.2016-0192
  • Ramani S, Crawford SE, Blutt SE, et al. Human organoid cultures: transformative new tools for human virus studies. Curr Opin Virol. 2018;29:79–86. doi:10.1016/j.coviro.2018.04.001
  • Porotto M, Ferren M, Chen YW, et al. Authentic modeling of human respiratory virus infection in human pluripotent stem cell-derived lung organoids. mBio. 2019;10(3):e00723–19. doi:10.1128/mBio.00723-19
  • Salahudeen AA, Choi SS, Rustagi A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature. 2020;588(7839):670–675. doi:10.1038/s41586-020-3014-1
  • Depla JA, Mulder LA, De Sa RV, et al. Human brain organoids as models for central nervous system viral infection. Viruses. 2022;14(3):634. doi:10.3390/v14030634
  • Louz D, Bergmans HE, Loos BP, et al. Animal models in virus research: their utility and limitations. Crit Rev Microbiol. 2013;39(4):325–361. doi:10.3109/1040841X.2012.711740
  • Zhao X, Zhang S. Fabrication of molecular materials using peptide construction motifs. Trends Biotechnol. 2004;22(9):470–476. doi:10.1016/j.tibtech.2004.07.011
  • Yokoi H, Kinoshita T, Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci USA. 2005;102(24):8414–8419. doi:10.1073/pnas.0407843102
  • Wang X, Wang J, Guo L, et al. Self-assembling peptide hydrogel scaffolds support stem cell-based hair follicle regeneration. Nanomedicine. 2016;12(7):2115–2125. doi:10.1016/j.nano.2016.05.021
  • He B, Ou Y, Chen S, et al. Designer bFGF-incorporated d-form self-assembly peptide nanofiber scaffolds to promote bone repair. Mater Sci Eng C Mater Biol Appl. 2017;74:451–458. doi:10.1016/j.msec.2016.12.042
  • Liu J, Song H, Zhang L, et al. Self-assembly-peptide hydrogels as tissue-engineering scaffolds for three-dimensional culture of chondrocytes in vitro. Macromol Biosci. 2010;10(10):1164–1170. doi:10.1002/mabi.200900450
  • Song H, Han YZ, Cai GH, et al. The effects of self-assembling peptide RADA16 hydrogel on malignant phenotype of human hepatocellular carcinoma cell. Int J Clin Exp Med. 2015;8(9):14906–14915.
  • Song H, Cai GH, Liang J, et al. Three-dimensional culture and clinical drug responses of a highly metastatic human ovarian cancer HO-8910PM cells in nanofibrous microenvironments of three hydrogel biomaterials. J Nanobiotechnology. 2020;18(1):90. doi:10.1186/s12951-020-00646-x
  • Ao DS, Gao LY, Gu JH, et al. Study on adenovirus infection in vitro with nanoself-assembling peptide as scaffolds for 3D culture. Int J Nanomed. 2020;15:6327–6338. doi:10.2147/IJN.S239395
  • Ao DS, Xu YE, Xin S, et al. Establishing a three-dimensional culture model of adenovirus using nanoself-assembling peptide KLD-12 hydrogels as scaffolds to evaluate the antiviral effects of IFNα2b. Mater Express. 2022;12(3):487–497. doi:10.1166/mex.2022.2164
  • Zou WY, Blutt SE, Crawford SE, et al. Human intestinal enteroids: new models to study gastrointestinal virus infections. Methods Mol Biol. 2019;1576:229–247. doi:10.1007/7651_2017_1
  • Costantini V, Morantz EK, Browne H, et al. Human norovirus replication in human intestinal enteroids as model to evaluate virus inactivation. Emerg Infect Dis. 2018;24(8):1453–1464. doi:10.3201/eid2408.180126
  • Saxena K, Simon LM, Zeng XL, et al. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc Natl Acad Sci USA. 2017;114(4):E570–E579. doi:10.1073/pnas.1615422114
  • Masuko T, Iwasaki N, Yamane S, et al. Chitosan-RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering. Biomaterials. 2005;26(26):5339–5347. doi:10.1016/j.biomaterials.2005.01.062
  • Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499(7459):481–484. doi:10.1038/nature12271
  • Watson CL, Mahe MM, Munera J, et al. An in vivo model of human small intestine using pluripotent stem cells. Nat Med. 2014;20(11):1310–1314. doi:10.1038/nm.3737
  • Rajan SAP, Aleman J, Wan M, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-A-chip platform. Acta Biomater. 2020;106:124–135. doi:10.1016/j.actbio.2020.02.015