879
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering

ORCID Icon, , , , , , , , & show all
Pages 3595-3622 | Received 04 Apr 2023, Accepted 13 Jun 2023, Published online: 01 Jul 2023

References

  • Chande S, Bergwitz CJNr C. Role of phosphate sensing in bone and mineral metabolism. Nat Rev Endocrinol. 2018;14(11):637–655. doi:10.1038/s41574-018-0076-3
  • Farokhi M, Mottaghitalab F, Shokrgozar M, Ou K, Mao C, Hosseinkhani HJ. Importance of dual delivery systems for bone tissue engineering. J Control Release. 2016;225:152–169. doi:10.1016/j.jconrel.2016.01.033
  • Qi JQ, Yu TQ, Hu BY, Wu HW, Ouyang HW. Current biomaterial-based bone tissue engineering and translational medicine. Review. Int J Mol Sci. 2021;22(19):20. 10233. doi:10.3390/ijms221910233
  • Bose S, Sarkar NJ. Natural medicinal compounds in bone tissue engineering. Trends Biotechnol. 2020;38(4):404–417. doi:10.1016/j.tibtech.2019.11.005
  • Kashirina A, Yao Y, Liu Y, Leng JJ. Biopolymers as bone substitutes: a review. Biomater Sci. 2019;7(10):3961–3983. doi:10.1039/c9bm00664h
  • Amini Z, Lari R. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Review. Tissue Cell. 2021;69:101494. doi:10.1016/j.tice.2021.101494
  • Nikolaou VS, Giannoudis PV. History of osteochondral allograft transplantation. Article. Inj Int J Care Inj. 2017;48(7):1283–1286. doi:10.1016/j.injury.2017.05.005
  • Guo L, Liang Z, Yang L, et al. The role of natural polymers in bone tissue engineering. J J Control Release. 2021;338:571–582. doi:10.1016/j.jconrel.2021.08.055
  • Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater. 2021;6(5):1491–1511. doi:10.1016/j.bioactmat.2020.11.004
  • Qin D, Wang N, You X, Zhang A, Chen X, Liu Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives. Biomater Sci. 2022;10(2):318–353. doi:10.1039/d1bm01294k
  • Wang Z, Wang Y, Yan J, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504–534. doi:10.1016/j.addr.2021.05.007
  • Bow A, Anderson D, Dhar M. Commercially available bone graft substitutes: the impact of origin and processing on graft functionality. Drug Metab Rev. 2019;51(4):533–544. doi:10.1080/03602532.2019.1671860
  • Sohn H, JJBr O. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res. 2019;23:9. doi:10.1186/s40824-019-0157-y
  • Hou Y, Xie W, Achazi K, et al. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomater. 2018;77:28–37. doi:10.1016/j.actbio.2018.07.003
  • Suliman S, Sun Y, Pedersen TO, et al. In vivo host response and degradation of copolymer scaffolds functionalized with nanodiamonds and bone morphogenetic protein 2. Adv Healthc Mater. 2016;5(6):730–742. doi:10.1002/adhm.201500723
  • Yao Q, Liu Y, Selvaratnam B, Koodali RT, Sun H. Mesoporous silicate nanoparticles/3D nanofibrous scaffold-mediated dual-drug delivery for bone tissue engineering. J Control Release. 2018;279:69–78. doi:10.1016/j.jconrel.2018.04.011
  • Paris J, Lafuente-Gómez N, Cabañas M, Román J, Peña J, Vallet-Regí M. Fabrication of a nanoparticle-containing 3D porous bone scaffold with proangiogenic and antibacterial properties. Acta Biomater. 2019;86:441–449. doi:10.1016/j.actbio.2019.01.013
  • Chen S, Shi Y, Zhang X, Ma J. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo. Mater Sci Eng C Mater Biol Appl. 2020;112:110893. doi:10.1016/j.msec.2020.110893
  • De-Paula MMM, Afewerki S, Viana BC, Webster TJ, Lobo AO, Marciano FR. Dual effective core-shell electrospun scaffolds: promoting osteoblast maturation and reducing bacteria activity. Mater Sci Eng C Mater Biol Appl. 2019;103:109778. doi:10.1016/j.msec.2019.109778
  • Chu YS, Wong PC, Jang JS, Chen CH, Wu SH. Combining Mg-Zn-Ca bulk metallic glass with a mesoporous silica nanocomposite for bone tissue engineering. Pharmaceutics. 2022;14(5). doi:10.3390/pharmaceutics14051078
  • Rastegar A, Mahmoodi M, Mirjalili M, Nasirizadeh N. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells. Article. Carbohydr Polym. 2021;269:15. 118351. doi:10.1016/j.carbpol.2021.118351
  • Filova E, Rampichova M, Litvinec A, et al. A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm. 2013;447(1–2):139–149. doi:10.1016/j.ijpharm.2013.02.056
  • Chen Y, Wu T, Huang S, et al. Sustained release SDF-1alpha/TGF-beta1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair. ACS Appl Mater Interfaces. 2019;11(16):14608–14618. doi:10.1021/acsami.9b01532
  • Monteiro N, Ribeiro D, Martins A, et al. Instructive nanofibrous scaffold comprising runt-related transcription factor 2 gene delivery for bone tissue engineering. Article. ACS Nano. 2014;8(8):8082–8094. doi:10.1021/nn5021049
  • Li T, Peng MZ, Yang ZZ, et al. 3D-printed IFN-gamma-loading calcium silicate-beta-tricalcium phosphate scaffold sequentially activates M1 and M2 polarization of macrophages to promote vascularization of tissue engineering bone. Article. Acta Biomater. 2018;71:96–107. doi:10.1016/j.actbio.2018.03.012
  • Wang CZ, Wang YH, Lin CW, et al. Combination of a bioceramic scaffold and simvastatin nanoparticles as a synthetic alternative to autologous bone grafting. Article. Int J Mol Sci. 2018;19(12):19. 4099. doi:10.3390/ijms19124099
  • Venkatesan N, Liyanage ADT, Castro-Nunez J, et al. Biodegradable polymerized simvastatin stimulates bone formation. Acta Biomater. 2019;93:192–199. doi:10.1016/j.actbio.2019.04.059
  • Chen L, Tang Y, Zhao K, et al. Sequential release of double drug (graded distribution) loaded gelatin microspheres/PMMA bone cement. J Mater Chem B. 2021;9(2):508–522. doi:10.1039/d0tb01452d
  • Daryasari MP, Telgerd MD, Karami MH, et al. Poly-l-lactic acid scaffold incorporated chitosan-coated mesoporous silica nanoparticles as pH-sensitive composite for enhanced osteogenic differentiation of human adipose tissue stem cells by dexamethasone delivery. Article. Artif Cells Nanomed Biotechnol. 2019;47(1):4020–4029. doi:10.1080/21691401.2019.1658594
  • Zhou X, Liu P, Nie W, et al. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity. Int J Biol Macromol. 2020;149:116–126. doi:10.1016/j.ijbiomac.2020.01.237
  • Han XY, Sun MJ, Chen B, et al. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Article. Bioact Mater. 2021;6(6):1639–1652. doi:10.1016/j.bioactmat.2020.11.019
  • Cheng X, Cheng G, Xing X, et al. Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through STAT3 signaling pathway. J Controlled Release. 2020;319:234–245. doi:10.1016/j.jconrel.2019.12.048
  • Sumathra M, Munusamy MA, Alarfaj AA, Rajan M. Osteoblast response to vitamin D3 loaded cellulose enriched hydroxyapatite Mesoporous silica nanoparticles composite. Biomed Pharmacother. 2018;103:858–868. doi:10.1016/j.biopha.2018.04.078
  • Li Y, Li Q, Li H, et al. An effective dual-factor modified 3D-printed PCL scaffold for bone defect repair. J Biomed Mater Res B Appl Biomater. 2020;108(5):2167–2179. doi:10.1002/jbm.b.34555
  • Li Y, Bai YJ, Pan JJ, et al. A hybrid 3D-printed aspirin-laden liposome composite scaffold for bone tissue engineering. Article. J Mat Chem B. 2019;7(4):619–629. doi:10.1039/c8tb02756k
  • Monavari M, Homaeigohar S, Fuentes-Chandía M, et al. 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO-CaO nanoparticles for bone tissue engineering. Mater Sci Eng. 2021;131:112470. doi:10.1016/j.msec.2021.112470
  • Lai Y, Cao H, Wang X, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits. Biomaterials. 2018;153:1–13. doi:10.1016/j.biomaterials.2017.10.025
  • Jin S, Gao J, Yang R, et al. A baicalin-loaded coaxial nanofiber scaffold regulated inflammation and osteoclast differentiation for vascularized bone regeneration. Bioact Mater. 2022;8:559–572. doi:10.1016/j.bioactmat.2021.06.028
  • Kamali A, Oryan A, Hosseini S, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C Mater Biol Appl. 2019;101:64–75. doi:10.1016/j.msec.2019.03.070
  • Sarkar N, Bose S. Liposome-encapsulated curcumin-loaded 3D printed scaffold for bone tissue engineering. ACS Appl Mat Interfaces. 2019;11(19):17184–17192. doi:10.1021/acsami.9b01218
  • Ji C, Bi L, Li J, Fan J. Salvianolic acid B-loaded chitosan/hydroxyapatite scaffolds promotes the repair of segmental bone defect by angiogenesis and osteogenesis. Int J Nanomed. 2019;14:8271–8284. doi:10.2147/ijn.S219105
  • Liu Y, Wang R, Chen S, et al. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair. Int J Biol Macromol. 2020;148:153–162. doi:10.1016/j.ijbiomac.2020.01.109
  • Rumian Ł, Tiainen H, Cibor U, et al. Ceramic scaffolds enriched with gentamicin loaded poly(lactide-co-glycolide) microparticles for prevention and treatment of bone tissue infections. Mater Sci Eng C Mater Biol Appl. 2016;69:856–864. doi:10.1016/j.msec.2016.07.065
  • Cheng T, Qu H, Zhang G. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018;46(8):1935–1947. doi:10.1080/21691401.2017.1396997
  • Ferreira M, Rzhepishevska O, Grenho L, et al. Levofloxacin-loaded bone cement delivery system: highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm. 2017;532(1):241–248. doi:10.1016/j.ijpharm.2017.08.089
  • Wang H, Liu J, Tao S, et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int J Nanomed. 2015;10:5671–5685. doi:10.2147/ijn.S88798
  • Ghosh S, Wu V, Pernal S, Uskoković V. Self-setting calcium phosphate cements with tunable antibiotic release rates for advanced antimicrobial applications. ACS Appl Mater Interfaces. 2016;8(12):7691–7708. doi:10.1021/acsami.6b01160
  • Bigham A, Aghajanian AH, Behzadzadeh S, et al. Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2019;99:83–95. doi:10.1016/j.msec.2019.01.096
  • Liang W, Gao M, Lou J, et al. Integrating silicon/zinc dual elements with PLGA microspheres in calcium phosphate cement scaffolds synergistically enhances bone regeneration. J Mater Chem B. 2020;8(15):3038–3049. doi:10.1039/c9tb02901j
  • Rohnke M, Pfitzenreuter S, Mogwitz B, et al. Strontium release from Sr(2+)-loaded bone cements and dispersion in healthy and osteoporotic rat bone. J Control Release. 2017;262:159–169. doi:10.1016/j.jconrel.2017.07.036
  • Liao F, Peng XY, Yang F, Ke QF, Zhu ZH, Guo YP. Gadolinium-doped mesoporous calcium silicate/chitosan scaffolds enhanced bone regeneration ability. Article. Mater Sci Eng C Mater Biol Appl. 2019;104:11. 109999. doi:10.1016/j.msec.2019.109999
  • Peng XY, Hu M, Liao F, et al. La-Doped mesoporous calcium silicate/chitosan scaffolds for bone tissue engineering. Article. Biomater Sci. 2019;7(4):1565–1573. doi:10.1039/c8bm01498a
  • Kurtuldu F, Mutlu N, Michalek M, et al. Cerium and gallium containing mesoporous bioactive glass nanoparticles for bone regeneration: bioactivity, biocompatibility and antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2021;124:112050. doi:10.1016/j.msec.2021.112050
  • Singh B, Pramanik K. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering. J Biomater Sci Polym Ed. 2018;29(16):2011–2034. doi:10.1080/09205063.2018.1523525
  • Lin CY, Chang YH, Li KC, et al. The use of ASCs engineered to express BMP2 or TGF-beta3 within scaffold constructs to promote calvarial bone repair. Biomaterials. 2013;34(37):9401–9412. doi:10.1016/j.biomaterials.2013.08.051
  • Tevlin R, desJardins-Park H, Huber J, DiIorio SE, Longaker MT, Wan DC. Musculoskeletal tissue engineering: adipose derived stromal cell implementation for the treatment of osteoarthritis. Biomaterials. 2022;286:121544. doi:10.1016/j.biomaterials.2022.121544
  • Qi X, Zhang J, Yuan H, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and osteogenesis in osteoporotic rats. Int J Biol Sci. 2016;12(7):836–849. doi:10.7150/ijbs.14809
  • Xie J, Peng C, Zhao Q, et al. Osteogenic differentiation and bone regeneration of iPSC-MSCs supported by a biomimetic nanofibrous scaffold. Acta Biomater. 2016;29:365–379. doi:10.1016/j.actbio.2015.10.007
  • Zhang M, Shi J, Xie M, et al. Recapitulation of cartilage/bone formation using iPSCs via biomimetic 3D rotary culture approach for developmental engineering. Biomaterials. 2020;260:120334. doi:10.1016/j.biomaterials.2020.120334
  • Evans ND, Gentleman E, Chen X, Roberts CJ, Polak JM, Stevens MM. Extracellular matrix-mediated osteogenic differentiation of murine embryonic stem cells. Biomaterials. 2010;31(12):3244–3252. doi:10.1016/j.biomaterials.2010.01.039
  • Gamie Z, Tran GT, Vyzas G, et al. Stem cells combined with bone graft substitutes in skeletal tissue engineering. Review. Expert Opin Biol Ther. 2012;12(6):713–729. doi:10.1517/14712598.2012.679652
  • Liu Z, Chang H, Hou Y, et al. Lentivirus-mediated microRNA-26a overexpression in bone mesenchymal stem cells facilitates bone regeneration in bone defects of calvaria in mice. Mol Med Rep. 2018;18(6):5317–5326. doi:10.3892/mmr.2018.9596
  • Deng Y, Zhou H, Gu P, Fan X. Repair of canine medial orbital bone defects with miR-31-modified bone marrow mesenchymal stem cells. Invest Ophthalmol Vis Sci. 2014;55(9):6016–6023. doi:10.1167/iovs.14-14977
  • Bordukalo-Nikšić T, Kufner V, Vukičević S. The role of BMPs in the regulation of osteoclasts resorption and bone remodeling: from experimental models to clinical applications. Front Immunol. 2022;13:869422. doi:10.3389/fimmu.2022.869422
  • Shi C, Zhang H, Louie K, Mishina Y, Sun HJ. BMP signaling mediated by BMPR1A in osteoclasts negatively regulates osteoblast mineralization through suppression of Cx43. J Cell Biochem. 2017;118(3):605–614. doi:10.1002/jcb.25746
  • Noori A, Ashrafi S, Vaez-Ghaemi R, Hatamian-Zaremi A, Webster TJ. A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomed. 2017;12:4937–4961. doi:10.2147/ijn.S124671
  • Chen R, Yu Y, Zhang W, et al. Tuning the bioactivity of bone morphogenetic protein-2 with surface immobilization strategies. Acta Biomater. 2018;80:108–120. doi:10.1016/j.actbio.2018.09.011
  • Dolci L, Panzavolta S, Torricelli P, et al. Modulation of Alendronate release from a calcium phosphate bone cement: an in vitro osteoblast-osteoclast co-culture study. Int J Pharm. 2019;554:245–255. doi:10.1016/j.ijpharm.2018.11.023
  • Dolci L, Panzavolta S, Albertini B, et al. Spray-congealed solid lipid microparticles as a new tool for the controlled release of bisphosphonates from a calcium phosphate bone cement. Eur J Pharm Biopharm. 2018;122:6–16. doi:10.1016/j.ejpb.2017.10.002
  • Liang ZC, Yang C, Ding X, Hedrick JL, Wang W, Yang YJ. Carboxylic acid-functionalized polycarbonates as bone cement additives for enhanced and sustained release of antibiotics. J Controlled Release. 2021;329:871–881. doi:10.1016/j.jconrel.2020.10.018
  • Xia B, Deng Y, Lv Y, Chen G. Stem cell recruitment based on scaffold features for bone tissue engineering. Biomater Sci. 2021;9(4):1189–1203. doi:10.1039/d0bm01591a
  • Hao Z, Song Z, Huang J, et al. The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci. 2017;5(8):1382–1392. doi:10.1039/c7bm00146k
  • Noreikaitė A, Antanavičiūtė I, Mikalayeva V, et al. Scaffold design for artificial tissue with bone marrow stem cells. Medicina. 2017;53(3):203–210. doi:10.1016/j.medici.2017.07.001
  • Qureshi A, Doyle A, Chen C, et al. Photoactivated miR-148b-nanoparticle conjugates improve closure of critical size mouse calvarial defects. Acta Biomater. 2015;12:166–173. doi:10.1016/j.actbio.2014.10.010
  • Arriaga M, Ding M, Gutierrez A, Chew S. The application of microRNAs in biomaterial scaffold-based therapies for bone tissue engineering. Biotechnol J. 2019;14(10):e1900084. doi:10.1002/biot.201900084
  • Li N, Jiang C, Zhang XD, et al. Preparation of an rhBMP-2 loaded mesoporous bioactive glass/calcium phosphate cement porous composite scaffold for rapid bone tissue regeneration. Article. J Mat Chem B. 2015;3(43):8558–8566. doi:10.1039/c5tb01423a
  • Babaie E, Bhaduri SB. Fabrication aspects of porous biomaterials in orthopedic applications: a review. Review. ACS Biomater Sci Eng. 2018;4(1):1–39. doi:10.1021/acsbiomaterials.7b00615
  • Chen XN, Fan HY, Deng XW, et al. Scaffold structural microenvironmental cues to guide tissue regeneration in bone tissue applications. Review. Nanomaterials. 2018;8(11):15. 960. doi:10.3390/nano8110960
  • Zhang J, Wang L, Zhang W, Zhang M, Luo ZP. Synchronization of calcium sulphate cement degradation and new bone formation is improved by external mechanical regulation. Article. J Orthop Res. 2015;33(5):685–691. doi:10.1002/jor.22839
  • Zhao DY, Zhu TT, Li J, et al. Poly(lactic-co-glycolic acid)-based composite bone-substitute materials. Review. Bioact Mater. 2021;6(2):346–360. doi:10.1016/j.bioactmat.2020.08.016
  • Venkatesan J, Kim SK. Nano-hydroxyapatite composite biomaterials for bone tissue engineering-a review. Review. J Biomed Nanotechnol. 2014;10(10):3124–3140. doi:10.1166/jbn.2014.1893
  • Yuan B, Wang ZW, Zhao Y, et al. In vitro and in vivo study of a novel nanoscale demineralized bone matrix coated PCL/beta-TCP scaffold for bone regeneration. Article. Macromol Biosci. 2021;21(3):11. 2000336. doi:10.1002/mabi.202000336
  • Bagherifard A, Yekta FJ, Aghdam HA, et al. Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med Biol Eng Comput. 2020;58(8):1681–1693. doi:10.1007/s11517-020-02157-1
  • Ballouze R, Marahat MH, Mohamad S, Saidin NA, Kasim SR, Ooi JP. Biocompatible magnesium-doped biphasic calcium phosphate for bone regeneration. Review. J Biomed Mater Res Part B. 2021;109(10):1426–1435. doi:10.1002/jbm.b.34802
  • El-Rashidy AA, Roether JA, Harhaus L, Kneser U, Boccaccini AR. Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Review. Acta Biomater. 2017;62:1–28. doi:10.1016/j.actbio.2017.08.030
  • Pei BQ, Wang W, Dunne N, Li XM. Applications of carbon nanotubes in bone tissue regeneration and engineering: superiority, concerns, current advancements, and prospects. Review. Nanomaterials. 2019;9(10):1501. doi:10.3390/nano9101501
  • Qian WM, Vahid MH, Sun YL, et al. Investigation on the effect of functionalization of single-walled carbon nanotubes on the mechanical properties of epoxy glass composites: experimental and molecular dynamics simulation. J Mater Res Technol. 2021;12:1931–1945. doi:10.1016/j.jmrt.2021.03.104
  • Sahmani S, Saber-Samandari S, Khandan A, Aghdam MM. Nonlinear resonance investigation of nanoclay based bio-nanocomposite scaffolds with enhanced properties for bone substitute applications. J Alloys Compd. 2019;773:636–653. doi:10.1016/j.jallcom.2018.09.211
  • Hertz A, Bruce IJ. Inorganic materials for bone repair or replacement applications. Review. Nanomedicine. 2007;2(6):899–918. doi:10.2217/17435889.2.6.899
  • Xiao DQ, Zhang JW, Zhang CD, et al. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Review. Acta Biomater. 2020;106:22–33. doi:10.1016/j.actbio.2019.12.034
  • Takahashi Y, Yamamoto M, Tabata Y. Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Article. Biomaterials. 2005;26(17):3587–3596. doi:10.1016/j.biomaterials.2004.09.046
  • Ginebra MP, Traykova T, Planell JA. Calcium phosphate cements as bone drug delivery systems: a review. Review. J Control Release. 2006;113(2):102–110. doi:10.1016/j.jconrel.2006.04.007
  • Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Review. Acta Biomater. 2012;8(4):1401–1421. doi:10.1016/j.actbio.2011.11.017
  • Cabrejos-Azama J, Alkhraisat MH, Rueda C, et al. Magnesium substitution in brushite cements: efficacy of a new biomaterial loaded with vancomycin for the treatment of Staphylococcus aureus infections. Article. Mater Sci Eng C Mater Biol Appl. 2016;61:72–78. doi:10.1016/j.msec.2015.10.092
  • Roy M, Bandyopadhyay A, Bose S. In vitro antimicrobial and biological properties of laser assisted tricalcium phosphate coating on titanium for load bearing implant. Article. Mater Sci Eng C Mater Biol Appl. 2009;29(6):1965–1968. doi:10.1016/j.msec.2009.03.009
  • Schumacher M, Reither L, Thomas J, et al. Calcium phosphate bone cement/mesoporous bioactive glass composites for controlled growth factor delivery. Article. Biomater Sci. 2017;5(3):578–588. doi:10.1039/c6bm00903d
  • Mistry S, Roy S, Maitra NJ, et al. A novel, multi-barrier, drug eluting calcium sulfate/biphasic calcium phosphate biodegradable composite bone cement for treatment of experimental MRSA osteomyelitis in rabbit model. Article. J Control Release. 2016;239:169–181. doi:10.1016/j.jconrel.2016.08.014
  • Garcia-Gareta E, Hua J, Knowles JC, Blunn GW. Comparison of mesenchymal stem cell proliferation and differentiation between biomimetic and electrochemical coatings on different topographic surfaces. Article. J Mater Sci Mater Med. 2013;24(1):199–210. doi:10.1007/s10856-012-4789-x
  • Surmenev RA. A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Review. Surf Coat Technol. 2012;206(8–9):2035–2056. doi:10.1016/j.surfcoat.2011.11.002
  • Sia IG, Berbari EF. Osteomyelitis. Article. Best Pract Res Clin Rheumatol. 2006;20(6):1065–1081. doi:10.1016/j.berh.2006.08.014
  • Schafer P, Fink B, Sandow D, Margull A, Berger I, Frommelt L. Prolonged bacterial culture to identify late periprosthetic joint infection: a promising strategy. Article. Clin Infect Dis. 2008;47(11):1403–1409. doi:10.1086/592973
  • Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. VEGF gene delivery to myocardium - deleterious effects of unregulated expression. Article. Circulation. 2000;102(8):898–901. doi:10.1161/01.CIR.102.8.898
  • Lucas-Aparicio J, Manchon A, Rueda C, et al. Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: substrates to customize the release of antibiotics according to the idiosyncrasies of the patient. Article. Mater Sci Eng C Mater Biol Appl. 2020;106:8. 110173. doi:10.1016/j.msec.2019.110173
  • Pastorino D, Canal C, Ginebra MP. Drug delivery from injectable calcium phosphate foams by tailoring the macroporosity-drug interaction. Article. Acta Biomater. 2015;12:250–259. doi:10.1016/j.actbio.2014.10.031
  • Murphy CM, Schindeler A, Gleeson JP, et al. A collagen-hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Article. Acta Biomater. 2014;10(5):2250–2258. doi:10.1016/j.actbio.2014.01.016
  • Bohner M, Lemaitre J, Merkle HP, Gander B. Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid). Article. J Pharm Sci. 2000;89(10):1262–1270. doi:10.1002/1520-6017(200010)89:10<1262::Aid-jps4>3.0.Co;2-7
  • Manchon A, Alkhraisat M, Rueda-Rodriguez C, et al. Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. Article. J Biomed Mater Res A. 2015;103(2):479–488. doi:10.1002/jbm.a.35196
  • Aparicio JL, Rueda C, Manchon A, et al. Effect of physicochemical properties of a cement based on silicocarnotite/calcium silicate on in vitro cell adhesion and in vivo cement degradation. Article. Biomed Mater. 2016;11(4):15. 045005. doi:10.1088/1748-6041/11/4/045005
  • Hanein D, Geiger B, Addadi L. Fibronectin adsorption to surfaces of hydrated crystals - an analysis of the importance of bound water in protein substrate interactions. Article. Langmuir. 1993;9(4):1058–1065. doi:10.1021/la00028a030
  • Flade K, Lau C, Mertig M, Pompe W. Osteocalcin-controlled dissolution-reprecipitation of calcium phosphate under biomimetic conditions. Article. Chem Mat. 2001;13(10):3596–3602. doi:10.1021/cm011063z
  • Thomas A, Jones F. Biological surface science. Editorial material. J Phys Condes Matter. 2004;16(26):1.
  • Eivazzadeh-Keihan R, Chenab KK, Taheri-Ledari R, et al. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering. Review. Mater Sci Eng C Mater Biol Appl. 2020;107:15. 110267. doi:10.1016/j.msec.2019.110267
  • He CL, Nie W, Feng W. Engineering of biomimetic nanofibrous matrices for drug delivery and tissue engineering. Article. J Mat Chem B. 2014;2(45):7828–7848. doi:10.1039/c4tb01464b
  • Liao JF, Qu Y, Chu BY, Zhang XN, Qian ZY. Biodegradable CSMA/PECA/graphene porous hybrid scaffold for cartilage tissue engineering. Article. Sci Rep. 2015;5:16. 09879. doi:10.1038/srep09879
  • Liao JF, Shi K, Ding QX, Qu Y, Luo F, Qian ZY. Recent developments in scaffold-guided cartilage tissue regeneration. Article. J Biomed Nanotechnol. 2014;10(10):3085–3104. doi:10.1166/jbn.2014.1934
  • Qiu KX, Chen B, Nie W, et al. Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto Poly(L-Lactic Acid)/Poly(epsilon-Caprolactone) composite scaffold for bone tissue engineering. Article. ACS Appl Mater Interfaces. 2016;8(6):4137–4148. doi:10.1021/acsami.5b11879
  • Zhou XJ, Weng WZ, Chen B, et al. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. Article. J Mat Chem B. 2018;6(5):740–752. doi:10.1039/c7tb01246b
  • Gu WY, Wu CT, Chen JZ, Xiao Y. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Review. Int J Nanomed. 2013;8:13. doi:10.2147/ijn.S44393
  • Tavakol S, Nikpour MR, Hoveizi E, et al. Investigating the effects of particle size and chemical structure on cytotoxicity and bacteriostatic potential of nano hydroxyapatite/chitosan/silica and nano hydroxyapatite/chitosan/silver; as antibacterial bone substitutes. Article. J Nanopart Res. 2014;16(10):13. 2622. doi:10.1007/s11051-014-2622-9
  • Ding YP, Yao QQ, Li W, Schubert DW, Boccaccini AR, Roether JA. The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol-gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Article. Colloids Surf B Biointerfaces. 2015;136:93–98. doi:10.1016/j.colsurfb.2015.08.023
  • Zhou J, Lin H, Fang TL, et al. The repair of large segmental bone defects in the rabbit with vascularized tissue engineered bone. Article. Biomaterials. 2010;31(6):1171–1179. doi:10.1016/j.biomaterials.2009.10.043
  • Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering: approaches for potential improvement. Article. Tissue Eng Part B Rev. 2012;18(5):363–382. doi:10.1089/ten.teb.2012.0012
  • Shabafrooz V, Mozafari M, Vashaee D, Tayebi L. Electrospun nanofibers: from filtration membranes to highly specialized tissue engineering scaffolds. Review. J Nanosci Nanotechnol. 2014;14(1):522–534. doi:10.1166/jnn.2014.9195
  • Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Review. Acta Biomater. 2017;59:2–11. doi:10.1016/j.actbio.2017.06.046
  • Reffitt DM, Ogston N, Jugdaohsingh R, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Article. Bone. 2003;32(2):127–135. doi:10.1016/s8756-3282(02)00950-x
  • Chen L, Zhou XJ, He CL. Mesoporous silica nanoparticles for tissue-engineering applications. Review. Wiley Interdiscip Rev Nanomed. 2019;11(6):22. e1573. doi:10.1002/wnan.1573
  • Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167(3916):279. doi:10.1126/science.167.3916.279
  • Carlisle EM. Silicon: an essential element for the chick. Nutr Rev. 2009;40(7):210–213. doi:10.1111/j.1753-4887.1982.tb05313.x
  • Zhang QQ, Qin M, Zhou XJ, et al. Porous nanofibrous scaffold incorporated with S1P loaded mesoporous silica nanoparticles and BMP-2 encapsulated PLGA microspheres for enhancing angiogenesis and osteogenesis. Article. J Mat Chem B. 2018;6(42):6731–6743. doi:10.1039/c8tb02138d
  • Li HW, Gu JS, Shah LA, et al. Bone cement based on vancomycin loaded mesoporous silica nanoparticle and calcium sulfate composites. Article. Mater Sci Eng C Mater Biol Appl. 2015;49:210–216. doi:10.1016/j.msec.2014.12.082
  • Cui W, Liu QQ, Yang L, et al. Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. Article. ACS Biomater Sci Eng. 2018;4(1):211–221. doi:10.1021/acsbiomaterials.7b00506
  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Review. Adv Drug Deliv Rev. 2008;60(11):1278–1288. doi:10.1016/j.addr.2008.03.012
  • Cauda V, Onida B, Platschek B, Muhlstein L, Bein T. Large antibiotic molecule diffusion in confined mesoporous silica with controlled morphology. Article. J Mater Chem. 2008;18(48):5888–5899. doi:10.1039/b805395b
  • Lai CY, Trewyn BG, Jeftinija DM, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. Article. J Am Chem Soc. 2003;125(15):4451–4459. doi:10.1021/ja028650l
  • Trewyn BG, Slowing II, S G, Chen HT, Lin VSY. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. Review. Acc Chem Res. 2007;40(9):846–853. doi:10.1021/ar600032u
  • de Matos MBC, Piedade AP, Alvarez-Lorenzo C, Concheiro A, Braga MEM, de Sousa HC. Dexamethasone-loaded poly(epsilon-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition. Article. Int J Pharm. 2013;456(2):269–281. doi:10.1016/j.ijpharm.2013.08.042
  • Zhou XJ, Feng W, Qiu KX, et al. BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. Article. ACS Appl Mater Interfaces. 2015;7(29):15777–15789. doi:10.1021/acsami.5b02636
  • Wang X, Zhang GL, Qi F, et al. Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Article. Int J Nanomed. 2018;13:117–127. doi:10.2147/ijn.S150818
  • Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Review. Mater Sci Eng C Mater Biol Appl. 2020;110:30. 110698. doi:10.1016/j.msec.2020.110698
  • Pryadko A, Surmeneva M, Surmenev RJP. Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers. 2021;13(11). doi:10.3390/polym13111738
  • Li Y, Liu YZ, Long T, et al. Mesoporous bioactive glass as a drug delivery system: fabrication, bactericidal properties and biocompatibility. Article. J Mater Sci Mater Med. 2013;24(8):1951–1961. doi:10.1007/s10856-013-4960-z
  • Zhu M, Zhang LX, He QJ, Zhao JJ, Guo LM, Shi JL. Mesoporous bioactive glass-coated poly(L-lactic acid) scaffolds: a sustained antibiotic drug release system for bone repairing. Article. J Mater Chem. 2011;21(4):1064–1072. doi:10.1039/c0jm02179b
  • Farzin A, Etesami SA, Goodarzi A, Ai J. A facile way for development of three-dimensional localized drug delivery system for bone tissue engineering. Article. Mater Sci Eng C Mater Biol Appl. 2019;105:13. 110032. doi:10.1016/j.msec.2019.110032
  • Wang JZ, You ML, Ding ZQ, Ye WB. A review of emerging bone tissue engineering via PEG conjugated biodegradable amphiphilic copolymers. Review. Mater Sci Eng C Mater Biol Appl. 2019;97:1021–1035. doi:10.1016/j.msec.2019.01.057
  • Bose S, Sarkar N, Banerjee D. Effects of PCL, PEG and PLGA polymers on curcumin release from calcium phosphate matrix for in vitro and in vivo bone regeneration. Article. Mater Today Chem. 2018;8:110–120. doi:10.1016/j.mtchem.2018.03.005
  • Kim SS, Park MS, Jeon O, Choi CY, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Article. Biomaterials. 2006;27(8):1399–1409. doi:10.1016/j.biomaterials.2005.08.016
  • Subhapradha N, Abudhahir M, Aathira A, Srinivasan N, Moorthi A. Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. Review. Int J Biol Macromol. 2018;110:65–73. doi:10.1016/j.ijbiomac.2017.11.146
  • Ke XY, Ng VWL, Ono RJ, et al. Role of non-covalent and covalent interactions in cargo loading capacity and stability of polymeric micelles. Article. J Control Release. 2014;193:9–26. doi:10.1016/j.jconrel.2014.06.061
  • Oh SH, Kang SG, Kim ES, Cho SH, Lee JH. Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Article. Biomaterials. 2003;24(22):4011–4021. doi:10.1016/s0142-9612(03)00284-9
  • Zhang L, Yang GJ, Johnson BN, Jia XF. Three-dimensional (3D) printed scaffold and material selection for bone repair. Review. Acta Biomater. 2019;84:16–33. doi:10.1016/j.actbio.2018.11.039
  • Gupta V, Khan Y, Berkland CJ, Laurencin CT, Detamore MS. Microsphere-based scaffolds in regenerative engineering. In: Yarmush ML, editor. Annual Review of Biomedical Engineering. Vol. 19. Annual Reviews; 2017:135–161.
  • He J, Lin ZD, Hu XL, et al. Biocompatible and biodegradable scaffold based on polytrimethylene carbonate-tricalcium phosphate microspheres for tissue engineering. Article. Colloids Surf B Biointerfaces. 2021;204:9. 111808. doi:10.1016/j.colsurfb.2021.111808
  • Xie ZP, Liu X, Jia WT, Zhang CQ, Huang WH, Wang JQ. Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin. Article. J Control Release. 2009;139(2):118–126. doi:10.1016/j.jconrel.2009.06.012
  • Loca D, Sokolova M, Locs J, Smirnova A, Irbe Z. Calcium phosphate bone cements for local vancomycin delivery. Article. Mater Sci Eng C Mater Biol Appl. 2015;49:106–113. doi:10.1016/j.msec.2014.12.075
  • Calasans-Maia MD, Barboza CA, Soriano-Souza CA, et al. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration. Article. Int J Nanomed. 2019;14:4559–4571. doi:10.2147/ijn.S201631
  • Cai B, Zou Q, Zuo Y, et al. Injectable gel constructs with regenerative and anti-infective dual effects based on assembled chitosan microspheres. Article. ACS Appl Mater Interfaces. 2018;10(30):25099–25112. doi:10.1021/acsami.8b06648
  • Shen XF, Zhang YX, Gu Y, et al. Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Article. Biomaterials. 2016;106:205–216. doi:10.1016/j.biomaterials.2016.08.023
  • Akkineni AR, Luo YX, Schumacher M, Nies B, Lode A, Gelinsky M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Article. Acta Biomater. 2015;27:264–274. doi:10.1016/j.actbio.2015.08.036
  • Soriano-Souza C, Valiense H, Mavropoulos E, et al. Doxycycline containing hydroxyapatite ceramic microspheres as a bone-targeting drug delivery system. Article. J Biomed Mater Res Part B. 2020;108(4):1351–1362. doi:10.1002/jbm.b.34484
  • Ginebra MP, Canal C, Espanol M, Pastorino D, Montufar EB. Calcium phosphate cements as drug delivery materials. Review. Adv Drug Deliv Rev. 2012;64(12):1090–1110. doi:10.1016/j.addr.2012.01.008
  • Ruhe PQ, Boerman OC, Russel RGM, Spauwen PHM, Mikos AG, Jansen JA. Controlled release of rhBMP-2 loaded Poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composites in vivo. In: Nakamura T, Yamashita K, Neo M, editors. Bioceramics 18, Pts 1 and 2. Trans Tech Publications Ltd; 2006:973–976.
  • Lanao RPF, Bosco R, Leeuwenburgh SCG, et al. RANKL delivery from calcium phosphate containing PLGA microspheres. Article. J Biomed Mater Res A. 2013;101(11):3123–3130. doi:10.1002/jbm.a.34623
  • Alkhraisat MH, Rueda C, Cabrejos-Azama J, et al. Loading and release of doxycycline hyclate from strontium-substituted calcium phosphate cement. Article. Acta Biomater. 2010;6(4):1522–1528. doi:10.1016/j.actbio.2009.10.043
  • Farzin A, Fathi M, Emadi R. Multifunctional magnetic nanostructured hardystonite scaffold for hyperthermia, drug delivery and tissue engineering applications. Article. Mater Sci Eng C Mater Biol Appl. 2017;70:21–31. doi:10.1016/j.msec.2016.08.060
  • Habraken W, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Review. Adv Drug Deliv Rev. 2007;59(4–5):234–248. doi:10.1016/j.addr.2007.03.011
  • Kong DY, Shi YB, Gao Y, Fu MG, Kong SL, Lin GM. Preparation of BMP-2 loaded MPEG-PCL microspheres and evaluation of their bone repair properties. Article. Biomed Pharmacother. 2020;130:9. 110516. doi:10.1016/j.biopha.2020.110516
  • Yu X, Shen GY, Shang Q, et al. A naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Article. Int J Biol Macromol. 2021;193:510–518. doi:10.1016/j.ijbiomac.2021.10.036
  • Kawashita M. Development and evaluation of the properties of functional ceramic microspheres for biomedical applications. Review. J Ceram Soc Jpn. 2018;126(1):1–7. doi:10.2109/jcersj2.17192
  • Chen MQ, Wang X, Ye ZY, Zhang Y, Zhou Y, Tan WS. A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Article. Biomaterials. 2011;32(30):7532–7542. doi:10.1016/j.biomaterials.2011.06.054
  • Yuan ZY, Wei PF, Huang YQ, et al. Injectable PLGA microspheres with tunable magnesium ion release for promoting bone regeneration. Article. Acta Biomater. 2019;85:294–309. doi:10.1016/j.actbio.2018.12.017
  • Bi YG, Lin ZT, Deng ST. Fabrication and characterization of hydroxyapatite/sodium alginate/chitosan composite microspheres for drug delivery and bone tissue engineering. Article. Mater Sci Eng C Mater Biol Appl. 2019;100:576–583. doi:10.1016/j.msec.2019.03.040
  • Fan M, Ma Y, Tan HP, et al. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering. Article. Mater Sci Eng C Mater Biol Appl. 2017;71:67–74. doi:10.1016/j.msec.2016.09.068
  • He J, Hu XL, Cao JF, et al. Chitosan-coated hydroxyapatite and drug-loaded polytrimethylene carbonate/polylactic acid scaffold for enhancing bone regeneration. Article. Carbohydr Polym. 2021;253:9. 117198. doi:10.1016/j.carbpol.2020.117198
  • Cheng RY, Liu LL, Xiang Y, et al. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Review. Biomaterials. 2020;232:17. 119706. doi:10.1016/j.biomaterials.2019.119706
  • Elizondo E, Moreno E, Cabrera I, et al. Liposomes and other vesicular systems: structural characteristics, methods of preparation, and use in nanomedicine. In: Villaverde A, editor. Nanoparticles in Translational Science and Medicine. Elsevier Academic Press Inc; 2011:1–52.
  • Dubnika A, Egle K, Skrinda-Melne M, Skadins I, Rajadas J, Salma I. Development of vancomycin delivery systems based on autologous 3D platelet-rich fibrin matrices for bone tissue engineering. Article. Biomedicines. 2021;9(7):19. 814. doi:10.3390/biomedicines9070814
  • Guimaraes D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Review. Int J Pharm. 2021;601:15. 120571. doi:10.1016/j.ijpharm.2021.120571
  • Li J, Wang XL, Zhang T, et al. A review on phospholipids and their main applications in drug delivery systems. Review. Asian J Pharm Sci. 2015;10(2):81–98. doi:10.1016/j.ajps.2014.09.004
  • Liu LL, Xiang Y, Wang Z, et al. Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. Article. NPG Asia Mater. 2019;11(1):18. 81. doi:10.1038/s41427-019-0185-z
  • Bangham AD, Horne RW. Negative staining of phospholipids + their structural modification by-surface active agents as observed in electron microscope. Article. J Mol Biol. 1964;8(5):660. doi:10.1016/s0022-2836(64)80115-7
  • Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: challenges and fundamental considerations. Review. Trends Biotechnol. 2014;32(1):32–45. doi:10.1016/j.tibtech.2013.09.007
  • Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Review. Nanomedicine. 2013;8(9):1509–1528. doi:10.2217/nnm.13.118
  • Monteiro N, Martins A, Pires R, et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. Article. Biomater Sci. 2014;2(9):1195–1209. doi:10.1039/c4bm00069b
  • Lee CS, Hsu GCY, Sono T, Lee M, James AW. Development of a biomaterial scaffold integrated with osteoinductive oxysterol liposomes to enhance hedgehog signaling and bone repair. Article. Mol Pharm. 2021;18(4):1677–1689. doi:10.1021/acs.molpharmaceut.0c01136
  • Amler E, Filova E, Buzgo M, et al. Functionalized nanofibers as drug-delivery systems for osteochondral regeneration. Review. Nanomedicine. 2014;9(7):1083–1094. doi:10.2217/nnm.14.57
  • Wang D, Miller SC, Kopeckova P, Kopecek J. Bone-targeting macromolecular therapeutics. Review. Adv Drug Deliv Rev. 2005;57(7):1049–1076. doi:10.1016/j.addr.2004.12.011
  • Wang GL, Mostafa NZ, Incani V, Kucharski C, Uludag H. Bisphosphonate-decorated lipid nanoparticles designed as drug carriers for bone diseases. Article. J Biomed Mater Res A. 2012;100A(3):684–693. doi:10.1002/jbm.a.34002
  • Mickova A, Buzgo M, Benada O, et al. Core/shell nanofibers with embedded liposomes as a drug delivery system. Meeting abstract. J Tissue Eng Regen Med. 2012;6:35.
  • Monteiro N, Martins A, Ribeiro D, et al. On the use of dexamethasone-loaded liposomes to induce the osteogenic differentiation of human mesenchymal stem cells. Article. J Tissue Eng Regen Med. 2015;9(9):1056–1066. doi:10.1002/term.1817
  • Pornpattananangkul D, Olson S, Aryal S, et al. Stimuli-responsive liposome fusion mediated by gold nanoparticles. Article. ACS Nano. 2010;4(4):1935–1942. doi:10.1021/nn9018587
  • Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Review. Adv Drug Deliv Rev. 2012;64(12):1292–1309. doi:10.1016/j.addr.2012.01.016
  • Woodle MC, Scaria P. Cationic liposomes and nucleic acids. Review. Curr Opin Colloid Interface Sci. 2001;6(1):78–84. doi:10.1016/s1359-0294(00)00091-1
  • Storrie H, Mooney DJ. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Review. Adv Drug Deliv Rev. 2006;58(4):500–514. doi:10.1016/j.addr.2006.03.004
  • Kulkarni M, Greiser U, O’Brien T, Pandit A. Liposomal gene delivery mediated by tissue-engineered scaffolds. Review. Trends Biotechnol. 2010;28(1):28–36. doi:10.1016/j.tibtech.2009.10.003
  • Clare K, Hardwick SJ, Carpenter KLH, Weeratunge N, Mitchinson MJ. Toxicity of oxysterols to human monocyte-macrophages. Article. Atherosclerosis. 1995;118(1):67–75. doi:10.1016/0021-9150(95)05594-m
  • Park J, Brust TF, Lee HJ, Lee SC, Watts VJ, Yeo Y. Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. Article. ACS Nano. 2014;8(4):3347–3356. doi:10.1021/nn405809c
  • Sahoo S, Ang LT, Goh JCH, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. Article. J Biomed Mater Res A. 2010;93A(4):1539–1550. doi:10.1002/jbm.a.32645
  • Cui ZK, Kim S, Baljon JJ, et al. Design and characterization of a therapeutic non-phospholipid liposomal nanocarrier with osteoinductive characteristics to promote bone formation. Article. ACS Nano. 2017;11(8):8055–8063. doi:10.1021/acsnano.7b02702
  • Lee CS, Kim S, Fan JB, Hwang HS, Aghaloo T, Lee M. Smoothened agonist sterosome immobilized hybrid scaffold for bone regeneration. Article. Sci Adv. 2020;6(17):11. eaaz7822. doi:10.1126/sciadv.aaz7822
  • Cui ZK, Fan JB, Kim S, et al. Delivery of siRNA via cationic Sterosomes to enhance osteogenic differentiation of mesenchymal stem cells. Article. J Control Release. 2015;217:42–52. doi:10.1016/j.jconrel.2015.08.031
  • Kang M, Kang J, Le Thi P, et al. Three-dimensional printable gelatin hydrogels incorporating graphene oxide to enable spontaneous myogenic differentiation. ACS Macro Lett. 2021;10(4):426–432. doi:10.1021/acsmacrolett.0c00845
  • Bendtsen S, Quinnell S, Wei MJJobmr PA. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457–1468. doi:10.1002/jbm.a.36036
  • Bai X, Gao MZ, Syed S, Zhuang J, Xu XY, Zhang XQ. Bioactive hydrogels for bone regeneration. Review. Bioact Mater. 2018;3(4):401–417. doi:10.1016/j.bioactmat.2018.05.006
  • Li JY, Mooney DJ. Designing hydrogels for controlled drug delivery. Review. Nat Rev Mater. 2016;1(12):17. 16071. doi:10.1038/natrevmats.2016.71
  • Du XW, Zhou J, Shi JF, Xu B. Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Review. Chem Rev. 2015;115(24):13165–13307. doi:10.1021/acs.chemrev.5b00299
  • Kim YM, Park MR, Song SC. Injectable polyplex hydrogel for localized and long-term delivery of siRNA. Article. ACS Nano. 2012;6(7):5757–5766. doi:10.1021/nn300842a
  • Kim SH, Thambi T, Phan VHG, Lee DS. Modularly engineered alginate bioconjugate hydrogel as biocompatible injectable scaffold for in situ biomineralization. Article. Carbohydr Polym. 2020;233:11. 115832. doi:10.1016/j.carbpol.2020.115832
  • Lee S, Kang M, Jeon S, et al. 3D bioprinting of human mesenchymal stem cells-laden hydrogels incorporating MXene for spontaneous osteodifferentiation. Heliyon. 2023;9(3):e14490. doi:10.1016/j.heliyon.2023.e14490
  • Mitragotri S, Anderson DG, Chen XY, et al. Accelerating the translation of nanomaterials in biomedicine. Article. ACS Nano. 2015;9(7):6644–6654. doi:10.1021/acsnano.5b03569
  • Jiang L, Jiang YC, Stiadle J, et al. Electrospun nanofibrous thermoplastic polyurethane/poly(glycerol sebacate) hybrid scaffolds for vocal fold tissue engineering applications. Article. Mater Sci Eng C Mater Biol Appl. 2019;94:740–749. doi:10.1016/j.msec.2018.10.027
  • Ye KQ, Kuang HZ, You ZW, Morsi Y, Mo XM. Electrospun nanofibers for tissue engineering with drug loading and release. Review. Pharmaceutics. 2019;11(4):17. 182. doi:10.3390/pharmaceutics11040182
  • Moarrefzadeh A, Morovvati M, Angili S, Smaisim G, Khandan A, Toghraie DJ. Fabrication and finite element simulation of 3D printed poly L-lactic acid scaffolds coated with alginate/carbon nanotubes for bone engineering applications. Int J Biol Macromol. 2023;224:1496–1508. doi:10.1016/j.ijbiomac.2022.10.238
  • Sadeghi A, Moztarzadeh F, Mohandesi JA. Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. Article. Int J Biol Macromol. 2019;121:625–632. doi:10.1016/j.ijbiomac.2018.10.022
  • Venugopal E, Rajeswaran N, Sahanand KS, Bhattacharyya A, Rajendran S. In vitro evaluation of phytochemical loaded electrospun gelatin nanofibers for application in bone and cartilage tissue engineering. Article. Biomed Mater. 2019;14(1):11. 015004. doi:10.1088/1748-605X/aae3ef
  • Dang HP, Shabab T, Shafiee A, et al. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function. Article. Biofabrication. 2019;11(3):16. 035014. doi:10.1088/1758-5090/ab14ff
  • Ding YP, Li W, Zhang F, et al. Electrospun fibrous architectures for drug delivery, tissue engineering and cancer therapy. Review. Adv Funct Mater. 2019;29(2):35. 1802852. doi:10.1002/adfm.201802852
  • Iranmanesh P, Ehsani A, Khademi A, et al. Application of 3D bioprinters for dental pulp regeneration and tissue engineering (porous architecture). Transp Porous Media. 2022;142(1–2):265–293. doi:10.1007/s11242-021-01618-x
  • Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Review. Adv Healthc Mater. 2015;4(12):1742–1762. doi:10.1002/adhm.201500168
  • Qu MY, Wang CR, Zhou XW, et al. Multi-dimensional printing for bone tissue engineering. Review. Adv Healthc Mater. 2021;10(11):23. 2001986. doi:10.1002/adhm.202001986
  • Ye KQ, Liu DH, Kuang HZ, et al. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Article. J Colloid Interface Sci. 2019;534:625–636. doi:10.1016/j.jcis.2018.09.071
  • Lai Y, Li Y, Cao H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197:207–219. doi:10.1016/j.biomaterials.2019.01.013
  • Wroblewska-Krepsztul J, Rydzkowski T, Michalska-Pozoga I, Thakur VK. Biopolymers for biomedical and pharmaceutical applications: recent advances and overview of alginate electrospinning. Review. Nanomaterials. 2019;9(3):23. 404. doi:10.3390/nano9030404
  • Mao YJ, Zhao YP, Guan JJ, et al. Electrospun fibers: an innovative delivery method for the treatment of bone diseases. Review. Expert Opin Drug Deliv. 2020;17(7):993–1005. doi:10.1080/17425247.2020.1767583
  • Wang J, Windbergs M. Influence of polymer composition and drug loading procedure on dual drug release from PLGA:PEG electrospun fibers. Article. Eur J Pharm Sci. 2018;124:71–79. doi:10.1016/j.ejps.2018.08.028
  • Silva JC, Udangawa RN, Chen JL, et al. Kartogenin-loaded coaxial PGS/PCL aligned nanofibers for cartilage tissue engineering. Article. Mater Sci Eng C Mater Biol Appl. 2020;107:12. 110291. doi:10.1016/j.msec.2019.110291
  • Carvalho MS, Silva JC, Udangawa RN, et al. Co-culture cell-derived extracellular matrix loaded electrospun microfibrous scaffolds for bone tissue engineering. Article. Mater Sci Eng C Mater Biol Appl. 2019;99:479–490. doi:10.1016/j.msec.2019.01.127