439
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Emulsion Technology in Nuclear Medicine: Targeted Radionuclide Therapies, Radiosensitizers, and Imaging Agents

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4449-4470 | Received 11 Apr 2023, Accepted 19 Jul 2023, Published online: 03 Aug 2023

References

  • Kramer-Marek G, Capala J. The role of nuclear medicine in modern therapy of cancer. Tumor Biol. 2012;33(3):629–640. doi:10.1007/s13277-012-0373-8
  • Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: making precision medicine possible. CA Cancer J Clin. 2023;73(3):255–274. doi:10.3322/caac.21768
  • Schofield R, Menezes L, Underwood SR. Nuclear cardiology: state of the art. Heart. 2021. doi:10.1136/heartjnl-2019-315628
  • Anagnostopoulos C, Underwood R. Nuclear cardiology. Clin Med. 2012;12(4):373–377. doi:10.7861/clinmedicine.12-4-373
  • Wang J, Jin C, Zhou J, et al. PET molecular imaging for pathophysiological visualization in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2023;50(3):765–783. doi:10.1007/s00259-022-05999-z
  • Khalatbari H, Shulkin BL, Parisi MT. Emerging trends in radionuclide imaging of infection and inflammation in pediatrics: focus on FDG PET/CT and immune reactivity. Semin Nucl Med. 2023;53(1):18–36. doi:10.1053/j.semnuclmed.2022.10.002
  • Oh JS. Nuclear medicine physics: review of advanced technology. Prog Med Phys. 2020;31(3):81–98. doi:10.14316/pmp.2020.31.3.81
  • Kaushik D, Jangra P, Verma R, et al. Radiopharmaceuticals: an insight into the latest advances in medical uses and regulatory perspectives. J Biosci. 2021;2021:46.
  • Ramnaraign B, Sartor O. PSMA-targeted radiopharmaceuticals in prostate cancer: current data and new trials. Oncologist. 2023;28(5):392–401. doi:10.1093/oncolo/oyac279
  • Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: where do we stand? Front Med. 2022;9:1020188. doi:10.3389/fmed.2022.1020188
  • Handkiewicz-Junak D, Poeppel TD, Bodei L, et al. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides. Eur J Nucl Med Mol Imaging. 2018;45(5):846–859. doi:10.1007/s00259-018-3947-x
  • Goldsmith SJ. Targeted radionuclide therapy: a historical and personal review. Semin Nucl Med. 2020;50(1):87–97. doi:10.1053/j.semnuclmed.2019.07.006
  • Pellico J, Gawne PJ, de Rosales R. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev. 2021;50(5):3355–3423. doi:10.1039/D0CS00384K
  • Wu S, Helal-Neto E, Matos APDS, et al. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv. 2020;27(1):1544–1561. doi:10.1080/10717544.2020.1837296
  • Nehoff H, Parayath NN, Domanovitch L, Taurin S, Greish K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int J Nanomedicine. 2014;9(1):2539–2555. doi:10.2147/IJN.S47129
  • Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24(6):1159–1166. doi:10.1016/j.copbio.2013.02.020
  • Lepareur N, Lacœuille F, Bouvry C, et al. Rhenium-188 labeled radiopharmaceuticals: current clinical applications in oncology and promising perspectives. Front Med. 2019;6:132. doi:10.3389/fmed.2019.00132
  • Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–151. doi:10.1016/j.addr.2010.04.009
  • Lee W, Il An G, Park H, et al. Imaging Strategy that achieves ultrahigh contrast by utilizing differential esterase activity in organs: application in early detection of pancreatic cancer. ACS Nano. 2021;15(11):17348–17360. doi:10.1021/acsnano.1c05165
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. Biotech. 2015;5(2):123–127. doi:10.1007/s13205-014-0214-0
  • Díez-Villares S, Pellico J, Gómez-Lado N, et al. Biodistribution of (68/67)Ga-radiolabeled sphingolipid nanoemulsions by PET and SPECT Imaging. Int J Nanomedicine. 2021;16:5923–5935. doi:10.2147/IJN.S316767
  • Kim H, Lee SK, Kim YM, et al. Fluorescent iodized emulsion for pre- and intraoperative sentinel lymph node imaging: validation in a preclinical model. Radiology. 2014;275(1):196–204. doi:10.1148/radiol.14141159
  • Holman R, Lorton O, Guillemin PC, Desgranges S, Contino-Pépin C, Salomir R. Perfluorocarbon emulsion contrast agents: a mini review. Front Chem. 2021;9:810029. doi:10.3389/fchem.2021.810029
  • Sánchez-López E, Guerra M, Dias-Ferreira J, et al. Current applications of nanoemulsions in cancer therapeutics. Nanomater. 2019;9(6). doi:10.3390/nano9060821
  • Zhang T, Li M, Yang R, et al. Therapeutic efficacy of lipid emulsions of docetaxel-linoleic acid conjugate in breast cancer. Int J Pharm. 2018;546(1–2):61–69. doi:10.1016/j.ijpharm.2018.05.032
  • Qiu Z-H, Zhang -W-W, Zhang -H-H, Jiao G-H. Brucea javanica oil emulsion improves the effect of radiotherapy on esophageal cancer cells by inhibiting cyclin D1-CDK4/6 axis. World J Gastroenterol. 2019;25(20):2463–2472. doi:10.3748/wjg.v25.i20.2463
  • Jain S, Winuprasith T, Suphantharika M. Design and synthesis of modified and resistant starch-based oil-in-water emulsions. Food Hydrocoll. 2019;89:153–162. doi:10.1016/j.foodhyd.2018.10.036
  • Karthik P, Ezhilarasi PN, Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit Rev Food Sci Nutr. 2017;57(7):1435–1450. doi:10.1080/10408398.2015.1006767
  • Zhu Y, Ye J, Zhang Q. Self-emulsifying drug delivery system improve oral bioavailability: role of excipients and physico-chemical characterization. Pharm Nanotechnol. 2020;8(4):290–301. doi:10.2174/2211738508666200811104240
  • Wilson RJ, Li Y, Yang G, Zhao C-X. Nanoemulsions for drug delivery. Particuology. 2022;64:85–97. doi:10.1016/j.partic.2021.05.009
  • Salawi A. Self-emulsifying drug delivery systems: a novel approach to deliver drugs. Drug Deliv. 2022;29(1):1811–1823. doi:10.1080/10717544.2022.2083724
  • Dragulska SA, Chen Y, Wlodarczyk MT, et al. Tripeptide-stabilized oil-in-water nanoemulsion of an oleic acids–platinum (II) conjugate as an anticancer nanomedicine. Bioconjug Chem. 2018;29(8):2514–2519.
  • Patel NR, Piroyan A, Ganta S, et al. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biol Ther. 2018;19(7):554–564. doi:10.1080/15384047.2017.1395118
  • Chen L, Ao F, Ge X, Shen W. Food-grade pickering emulsions: preparation, stabilization and applications. Molecules. 2020;25(14). doi:10.3390/molecules25143202
  • Zhang W, Fu L, Yang H. Micrometer-scale mixing with pickering emulsions: biphasic reactions without stirring. Chem Sus Chem. 2014;7(2):391–396. doi:10.1002/cssc.201301001
  • Zhang J, Zhu J, Cheng Y, Huang Q. Recent advances in pickering double emulsions and potential applications in functional foods: a perspective paper. Foods. 2023;12(5). doi:10.3390/foods12050992
  • Ganta S, Singh A, Patel NR, et al. Development of EGFR-targeted nanoemulsion for imaging and novel platinum therapy of ovarian cancer. Pharm Res. 2014;31(9):2490–2502. doi:10.1007/s11095-014-1345-z
  • Natesan S, Sugumaran A, Ponnusamy C, Thiagarajan V, Palanichamy R, Kandasamy R. Chitosan stabilized camptothecin nanoemulsions: development, evaluation and biodistribution in preclinical breast cancer animal mode. Int J Biol Macromol. 2017;104:1846–1852.
  • Qadir A, Faiyazuddin MD, Talib Hussain MD, Alshammari TM, Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq. 2016;214:7–18. doi:10.1016/j.molliq.2015.11.050
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49. doi:10.1016/j.jconrel.2017.03.008
  • Song B, Wu S, Li W, Chen D, Hu H. Folate modified long circulating nano-emulsion as a promising approach for improving the efficiency of chemotherapy drugs in cancer treatment. Pharm Res. 2020;37(12):242. doi:10.1007/s11095-020-02811-1
  • Saani SM, Abdolalizadeh J, Heris SZ. Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrason Sonochem. 2019;55:86–95.
  • Masalova I, Tshilumbu NN, Mamedov E, Sanatkaran N. Effect of oil type on stability of high internal phase water-in-oil emulsions with super-cooled internal phase. Chem Eng Commun. 2018;205(1):1–11. doi:10.1080/00986445.2017.1367669
  • Gomes A, Costa ALR, Cunha RL. Impact of oil type and WPI/Tween 80 ratio at the oil-water interface: adsorption, interfacial rheology and emulsion features. Colloids Surf B Biointerfaces. 2018;164:272–280. doi:10.1016/j.colsurfb.2018.01.032
  • Izgelov D, Shmoeli E, Domb AJ, Hoffman A. The effect of medium chain and long chain triglycerides incorporated in self-nano emulsifying drug delivery systems on oral absorption of cannabinoids in rats. Int J Pharm. 2020;580:119201. doi:10.1016/j.ijpharm.2020.119201
  • Reddy MR, Gubbiyappa KS. Formulation development, optimization and characterization of Pemigatinib-loaded supersaturable self-nanoemulsifying drug delivery systems. Futur J Pharm Sci. 2022;8(1):45. doi:10.1186/s43094-022-00434-4
  • Lee Y, Lee D, Park E, et al. Rhamnolipid-coated W/O/W double emulsion nanoparticles for efficient delivery of doxorubicin/erlotinib and combination chemotherapy. J Nanobiotechnology. 2021;19(1):411. doi:10.1186/s12951-021-01160-4
  • Handa M, Ujjwal RR, Vasdev N, Flora SJS, Shukla R. Optimization of surfactant-and cosurfactant-aided pine oil nanoemulsions by isothermal low-energy methods for anticholinesterase activity. ACS omega. 2020;6(1):559–568.
  • Galvão KCS, Vicente AA, Sobral PJA. Development, characterization, and stability of O/W pepper nanoemulsions produced by high-pressure homogenization. Food Bioprocess Technol. 2018;11(2):355–367. doi:10.1007/s11947-017-2016-y
  • Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: a review. Prev Nutr Food Sci. 2019;24(3):225.
  • Heidari F, Jafari SM, Ziaiifar AM, Malekjani N. Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Adv Colloid Interface Sci. 2022;299:102567. doi:10.1016/j.cis.2021.102567
  • Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol. 2008;3(3):145–150. doi:10.1038/nnano.2008.30
  • Manzanares D, Ceña V. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 2020;12(4). doi:10.3390/pharmaceutics12040371
  • Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13. doi:10.1186/s11671-018-2728-6
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2). doi:10.3390/pharmaceutics10020057
  • Nandhakumar S, Dhanaraju MD, Sundar VD, Heera B. Influence of surface charge on the in vitro protein adsorption and cell cytotoxicity of paclitaxel loaded poly(ε-caprolactone) nanoparticles. Bull Fac Pharm Cairo Univ. 2017;55(2):249–258. doi:10.1016/j.bfopcu.2017.06.003
  • Ghobrial J, Gibson CM, Pinto DS. Delayed clopidogrel transit during myocardial infarction evident on angiography. J Invasive Cardiol. 2015;27(5):E68–9.
  • Chen X, Zhu W, Liu H, Deng F, Wang W, Qin L. Preparation of injectable clopidogrel loaded submicron emulsion for enhancing physicochemical stability and anti-thrombotic efficacy. Int J Pharm. 2022;611:121323. doi:10.1016/j.ijpharm.2021.121323
  • Abd-Elhakeem E, Teaima MHM, Abdelbary GA, El Mahrouk GM. Bioavailability enhanced clopidogrel-loaded solid SNEDDS: development and in-vitro/in-vivo characterization. J Drug Deliv Sci Technol. 2019;49:603–614.
  • Jadvar H. Targeted radionuclide therapy: an evolution toward precision cancer treatment. Am J Roentgenol. 2017;209(2):277–288. doi:10.2214/AJR.17.18264
  • Sousa D, Ferreira D, Rodrigues JL, Rodrigues LR. Nanotechnology in targeted drug delivery and therapeutics. In: In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, editors. Micro and Nano Technologies. Elsevier; 2019:357–409.
  • Umeda I, Hamamichi S, Fujii H. High tumor accumulation and rapid background clearance by using radionuclide-carrying liposomes for targeted radionuclide therapy and theranostics. J Nucl Med. 2017;58(supplement 1):458458.
  • Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled dendrimers for nuclear medicine applications. Molecules. 2017;22(9):1350. doi:10.3390/molecules22091350
  • Ognjanović M, Radović M, Mirković M, et al. 99mTc-, 90Y-, and 177Lu-labeled iron oxide nanoflowers designed for potential use in dual magnetic hyperthermia/radionuclide cancer therapy and diagnosis. ACS Appl Mater Interfaces. 2019;11(44):41109–41117. doi:10.1021/acsami.9b16428
  • Ngwa W, Kumar R, Sridhar S, et al. Targeted radiotherapy with gold nanoparticles: current status and future perspectives. Nanomedicine. 2014;9(7):1063–1082. doi:10.2217/nnm.14.55
  • Suhail N, Alzahrani AK, Basha WJ, et al. Microemulsions: unique properties, pharmacological applications, and targeted drug delivery. Front Nanotechnol. 2021;2021:3.
  • Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E386. doi:10.1002/ijc.29210
  • J-g L, Wang A-Y, Wei -Y-Y, Lui W-Y, Chi C-W, Chan W-K. Preparation of [131I]lipiodol as a hepatoma therapeutic agent. Int J Radiat Appl Instrumentation Part a Appl Radiat Isot. 1992;43(12):1431–1435. doi:10.1016/0883-2889(92)90168-E
  • Park C, Choi SI, Kim H, Yoo HS, Lee YB. Distribution of Lipiodol in hepatocellular carcinoma. Liver. 1990;10(2):72–78. doi:10.1111/j.1600-0676.1990.tb00439.x
  • Raoul J, Guyader D, Bretagne J, et al. Prospective randomized trial of chemoembolization versus intra-arterial injection of 131I-labeled–iodized oil in the treatment of hepatocellular carcinoma. Hepatology. 1997;26(5):1156–1161. doi:10.1002/hep.510260511
  • Raoul JL, Bourguet P, Bretagne JF, et al. Hepatic artery injection of I-131-labeled lipiodol. Part I. Biodistribution study results in patients with hepatocellular carcinoma and liver metastases. Radiology. 1988;168(2):541–545. doi:10.1148/radiology.168.2.2839866
  • Jouneau S, Vauléon E, Caulet-Maugendre S, et al. 131I-labeled lipiodol-induced interstitial pneumonia: a series of 15 cases. Chest. 2011;139(6):1463–1469. doi:10.1378/chest.10-1591
  • de Baere T, Zhang X, Aubert B, et al. Quantification of tumor uptake of iodized oils and emulsions of iodized oils: experimental study. Radiology. 1996;201(3):731–735. doi:10.1148/radiology.201.3.8939223
  • Garin E, Denizot B, Roux J, et al. Effect of stabilized iodized oil emulsion on experimentally induced hepatocellular carcinoma in rats. J Vasc Interv Radiol. 2005;16(6):841–848. doi:10.1097/01.RVI.0000156192.89569.0C
  • Shih YH, Lin XZ, Yeh CH, et al. Preparation and therapeutic evaluation of (188)Re-thermogelling emulsion in rat model of hepatocellular carcinoma. Int J Nanomedicine. 2014;9:4191–4201. doi:10.2147/IJN.S66346
  • Luo T-Y, Shih Y-H, Chen C-Y, et al. Evaluating the potential of 188Re-ECD/lipiodol as a therapeutic radiopharmaceutical by intratumoral injection for hepatoma treatment. Cancer Biother Radiopharm. 2009;24(5):535–541. doi:10.1089/cbr.2008.0603
  • Kitson LS, Cuccurullo V, Moody ST, Mansi L. Radionuclide antibody-conjugates, a targeted therapy towards cancer. Curr Radiopharm. 2013;6(2):57–71. doi:10.2174/1874471011306020001
  • Grieve ML, Paterson BM. The evolving coordination chemistry of radiometals for targeted alpha therapy. Aust J Chem. 2022;75(2):65–88. doi:10.1071/CH21184
  • Silindir-Gunay M, Karpuz M, Ozer AY. Targeted alpha therapy and nanocarrier approach. Cancer Biother Radiopharm. 2020;35(6):446–458. doi:10.1089/cbr.2019.3213
  • Du Y, Cortez A, Josefsson A, et al. Preliminary evaluation of alpha-emitting radioembolization in animal models of hepatocellular carcinoma. PLoS One. 2022;17(1):e0261982. doi:10.1371/journal.pone.0261982
  • Miyazaki T, Kai T, Ishida E, Kawashita M, Hiraoka M. Fabrication of yttria microcapsules for radiotherapy from water/oil emulsion. J Ceram Soc Japan. 2010;118(1378):479–482. doi:10.2109/jcersj2.118.479
  • Kawashita M, Takayama Y, Kokubo T, Takaoka GH, Araki N, Hiraoka M. Enzymatic preparation of hollow yttrium oxide microspheres for in situ radiotherapy of deep-seated cancer. J Am Ceram Soc. 2006;89(4):1347–1351. doi:10.1111/j.1551-2916.2005.00867.x
  • Memon K, Lewandowski RJ, Riaz A, Salem R. Yttrium 90 microspheres for the treatment of hepatocellular carcinoma. In: Vauthey JN, Brouquet A, editors. Multidisciplinary Treatment of Hepatocellular Carcinoma. Berlin Heidelberg: Springer; 2013:207–224.
  • Park YN, Yang C-P, Fernandez GJ, Cubukcu O, Thung SN, Theise ND. Neoangiogenesis and sinusoidal “capillarization” in dysplastic nodules of the liver. Am J Surg Pathol. 1998;22(6):1.
  • Padia SA, Shivaram G, Bastawrous S, et al. Safety and efficacy of drug-eluting bead chemoembolization for hepatocellular carcinoma: comparison of small-versus medium-size particles. J Vasc Interv Radiol. 2013;24(3):301–306. doi:10.1016/j.jvir.2012.11.023
  • Sridharan DM, Asaithamby A, Bailey SM, et al. Understanding cancer development processes after HZE-Particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat Res. 2015;183(1):1–26. doi:10.1667/RR13804.1
  • Brown JM. The hypoxic cell: a target for selective cancer therapy--eighteenth Bruce F. Cain memorial award lecture. Cancer Res. 1999;59(23):5863–5870.
  • Marie-Egyptienne DT, Lohse I, Hill RP. Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett. 2013;341(1):63–72. doi:10.1016/j.canlet.2012.11.019
  • Peitzsch C, Perrin R, Hill RP, Dubrovska A, Kurth I. Hypoxia as a biomarker for radioresistant cancer stem cells. Int J Radiat Biol. 2014;90(8):636–652. doi:10.3109/09553002.2014.916841
  • Wang H, Mu X, He H, Zhang X-D. Cancer radiosensitizers. Trends Pharmacol Sci. 2018;39(1):24–48. doi:10.1016/j.tips.2017.11.003
  • Krafft MP. Fluorocarbons and fluorinated amphiphiles in drug delivery and biomedical research. Adv Drug Deliv Rev. 2001;47(2):209–228. doi:10.1016/S0169-409X(01)00107-7
  • Johnson JLH, Dolezal MC, Kerschen A, Matsunaga TO, Unger EC. In vitro comparison of Dodecafluoropentane (DDFP), Perfluorodecalin (PFD), and Perfluoroctylbromide (PFOB) in the facilitation of oxygen exchange. Artif Cells Blood Sub Biotechnol. 2009;37(4):156–162. doi:10.1080/10731190903043192
  • Suyama T, Yokoyama K, Naito R. Development of a perfluorochemical whole blood substitute (Fluosol-DA, 20%)--an overview of clinical studies with 185 patients. Prog Clin Biol Res. 1981;55:609–628.
  • Rockwell S, Irvin CG, Kelley M, et al. Effects of hyperbaric oxygen and a perfluorooctylbromide emulsion on the radiation responses of tumors and normal tissues in rodents. Int J Radiat Oncol. 1992;22(1):87–93. doi:10.1016/0360-3016(92)90986-R
  • Evans RG, Kimler BF, Morantz RA, et al. A phase I/II study of the use of Fluosol® as an adjuvant to radiation therapy in the treatment of primary high-grade brain tumors. Int J Radiat Oncol. 1990;19(2):415–420. doi:10.1016/0360-3016(90)90551-T
  • Police AM, Waxman K, Tominaga G. Pulmonary complications after Fluosol administration to patients with life-threatening blood loss. Crit Care Med. 1985;13(2):1.
  • Johnson JLH, Leos RA, Baker AF, Unger EC. Radiosensitization of Hs-766T pancreatic tumor xenografts in mice dosed with dodecafluoropentane nano-emulsion-preliminary findings. J Biomed Nanotechnol. 2015;11(2):274–281. doi:10.1166/jbn.2015.1903
  • Jayaraman MS, Graham K, Unger EC. In vitro model to compare the oxygen offloading behaviour of dodecafluoropentane emulsion (DDFPe). Artif Cells Nanomed Biotechnol. 2019;47(1):783–789. doi:10.1080/21691401.2019.1577882
  • Johnson JLH. Oxygen carriers: are they enough for cellular support? In: Lapchak PA, Zhang JH, editors. Neuroprotective Therapy for Stroke and Ischemic Disease. Springer International Publishing; 2017:621–640.
  • Correas J-M, Meuter AR, Singlas E, Kessler DR, Worah D, Quay SC. Human pharmacokinetics of a perfluorocarbon ultrasound contrast agent evaluated with gas chromatography. Ultrasound Med Biol. 2001;27(4):565–570. doi:10.1016/s0301-5629(00)00363-x
  • Graham K, Unger E. Overcoming tumor hypoxia as a barrier to radiotherapy, chemotherapy and immunotherapy in cancer treatment. Int J Nanomedicine. 2018;13:6049–6058. doi:10.2147/IJN.S140462
  • Komatsu H, Kandeel F, Mullen Y. Impact of oxygen on pancreatic islet survival. Pancreas. 2018;47(5):533–543. doi:10.1097/MPA.0000000000001050
  • Jalani G, Jeyachandran D, Bertram Church R, Cerruti M. Graphene oxide-stabilized perfluorocarbon emulsions for controlled oxygen delivery. Nanoscale. 2017;9(29):10161–10166. doi:10.1039/C7NR00378A
  • Fu X, Ohta S, Kamihira M, Sakai Y, Ito T. Size-controlled preparation of microsized perfluorocarbon emulsions as oxygen carriers via the shirasu porous glass membrane emulsification technique. Langmuir. 2019;35(11):4094–4100. doi:10.1021/acs.langmuir.9b00194
  • Fu X, Ohta S, Kawakatsu T, Kamihira M, Sakai Y, Ito T. Bioinspired perfluorocarbon-based oxygen carriers with concave shape and deformable shell. Adv Mater Technol. 2022;7(3):2100573. doi:10.1002/admt.202100573
  • Kaoui B, Biros G, Misbah C. Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys Rev Lett. 2009;103(18):188101. doi:10.1103/PhysRevLett.103.188101
  • Hein AL, Ouellette MM, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol. 2014;45(5):1813–1819. doi:10.3892/ijo.2014.2614
  • Mansouri K, Rasoulpoor S, Daneshkhah A, et al. Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer. 2020;20(1):791. doi:10.1186/s12885-020-07256-8
  • Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene. 2004;23(8):1599–1607. doi:10.1038/sj.onc.1207284
  • Amekyeh H, Alkhader E, Sabra R, Billa N. Prospects of curcumin nanoformulations in cancer management. Molecules. 2022;27(2). doi:10.3390/molecules27020361
  • Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: a review of encapsulation technologies, bioaccessibility and applications. Food Res Int. 2020;132:109035. doi:10.1016/j.foodres.2020.109035
  • Minafra L, Porcino N, Bravatà V, et al. Radiosensitizing effect of curcumin-loaded lipid nanoparticles in breast cancer cells. Sci Rep. 2019;9(1):11134. doi:10.1038/s41598-019-47553-2
  • Lundsten S, Spiegelberg D, Raval NR, Nestor M. The radiosensitizer Onalespib increases complete remission in (177)Lu-DOTATATE-treated mice bearing neuroendocrine tumor xenografts. Eur J Nucl Med Mol Imaging. 2020;47(4):980–990. doi:10.1007/s00259-019-04673-1
  • Tian M, He X, Jin C, et al. Transpathology: molecular imaging-based pathology. Eur J Nucl Med Mol Imaging. 2021;48(8):2338–2350. doi:10.1007/s00259-021-05234-1
  • Carrete LR, Young JS, Cha S. Advanced imaging techniques for newly diagnosed and recurrent gliomas. Front Neurosci. 2022;16:1.
  • Israel O, Pellet O, Biassoni L, et al. Two decades of SPECT/CT – the coming of age of a technology: an updated review of literature evidence. Eur J Nucl Med Mol Imaging. 2019;46(10):1990–2012. doi:10.1007/s00259-019-04404-6
  • Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annu Rev Biomed Eng. 2015;17:385–414. doi:10.1146/annurev-bioeng-071114-040723
  • Boschi A, Uccelli L, Marvelli L, Cittanti C, Giganti M, Martini P. Technetium-99m radiopharmaceuticals for ideal myocardial perfusion imaging: lost and found opportunities. Molecules. 2022;27(4). doi:10.3390/molecules27041188
  • Liu M, Anderson R-C, Lan X, Conti PS, Chen K. Recent advances in the development of nanoparticles for multimodality imaging and therapy of cancer. Med Res Rev. 2020;40(3):909–930. doi:10.1002/med.21642
  • Nagachinta S, Bouzo BL, Vazquez-Rios AJ, Lopez R. Sphingomyelin-Based Nanosystems (SNs) for the development of anticancer miRNA therapeutics. Pharmaceutics. 2020;12(2):189. doi:10.3390/pharmaceutics12020189
  • Takino T, Konishi K, Takakura Y, Hashida M. Long circulating emulsion carrier systems for highly lipophilic drugs. Biol Pharm Bull. 1994;17(1):121–125. doi:10.1248/bpb.17.121
  • Huang G, Huang H. Hyaluronic acid-based biopharmaceutical delivery and tumor-targeted drug delivery system. J Control Release. 2018;278:122–126. doi:10.1016/j.jconrel.2018.04.015
  • Wang C, Leach BI, Lister D, et al. Metallofluorocarbon nanoemulsion for inflammatory macrophage detection via PET and MRI. J Nucl Med. 2021;62(8):1146–1153. doi:10.2967/jnumed.120.255273
  • Klang V, Matsko NB, Valenta C, Hofer F. Electron microscopy of nanoemulsions: an essential tool for characterisation and stability assessment. Micron. 2012;43(2–3):85–103. doi:10.1016/j.micron.2011.07.014