447
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

Application and Development Prospect of Nanoscale Iron Based Metal-Organic Frameworks in Biomedicine

, , &
Pages 4907-4931 | Received 17 Apr 2023, Accepted 19 Jul 2023, Published online: 01 Sep 2023

References

  • Velásquez-Hernández MD, Linares-Moreau M, Astria E, et al. Towards applications of bioentities@MOFs in biomedicine. Coordin Chem Rev. 2021;429:213651. doi:10.1016/j.ccr.2020.213651
  • Cai H, Huang Y-L, Dan L. Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coordin Chem Rev. 2019;378:207–221. doi:10.1016/j.ccr.2017.12.003
  • Liu W, Yin R, Xu X, et al. Structural engineering of low-dimensional metal–organic frameworks: synthesis, properties, and applications. Adv Sci. 2019;6(12):1802373. doi:10.1002/advs.201802373
  • Pan Y, Abazari R, Yao J, Gao J. Recent progress in 2D metal-organic framework photocatalysts: synthesis, photocatalytic mechanism and applications. J Phys Energy. 2021;3:032010. doi:10.1088/2515-7655/abf721
  • Ming X, Yang S-S, Zhi-Yuan G. Two-Dimensional Metal-Organic Framework Nanosheets: a Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDI-TOF Matrix and Biomimetic Applications. Chem Eur J. 2018;24:15131–15142. doi:10.1002/chem.201800556
  • Xin Y, Zhou J, Xing YH, et al. A series of porous 3D inorganic–organic hybrid framework crystalline materials based on 5-aminoisophthalic acid for photocatalytic degradation of crystal violet. New J Chem. 2021;45:3432–3440. doi:10.1039/D0NJ05472K
  • Yang J, Yang Y-W. Metal–Organic Frameworks for Biomedical Applications. Small. 2020;16:1906846. doi:10.1002/smll.201906846
  • Xueying G, Wong R, Anisa A, et al. Recent development of metal-organic framework nanocomposites for biomedical applications. Biomaterials. 2022;281:121322. doi:10.1016/j.biomaterials.2021.121322
  • Auer B, Telfer SG, Gross AJ. Metal Organic Frameworks for Bioelectrochemical Applications. Electroanalysis. 2023;35:2200145. doi:10.1002/elan.202200145
  • Karimi-Maleh H, Lütfi Yola M, Atar N, et al. A novel detection method for organophosphorus insecticide fenamiphos: molecularly imprinted electrochemical sensor based on core-shell Co3O4@MOF-74 nanocomposite. J Colloid Interf Sci. 2021;592:174–185. doi:10.1016/j.jcis.2021.02.066
  • Luna-Triguero A, Vicent-Luna JM, Madero-Castro RM, et al. Acetylene Storage and Separation Using Metal−Organic Frameworks with Open Metal Sites. ACS Appl Mater Interfaces. 2019;11:31499–31507. doi:10.1021/acsami.9b09010
  • Dolgopolova EA, Rice AM, Martin CR, et al. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev. 2018;47:4710–4728. doi:10.1039/C7CS00861A
  • Qin H, Yangjie F, Ge X, et al. Facile fabrication of Fe-BDC/Fe-2MI heterojunction with boosted photocatalytic activity for Cr(VI) reduction. J Environ Chem Eng. 2021;9(5):105961. doi:10.1016/j.jece.2021.105961
  • Ibrahim M, Sabouni R, Husseini GA, et al. Synthesis of Metal-Organic Framework from Iron Nitrate and 2,6-Naphthalenedicarboxylic Acid and Its Application as Drug Carrier. J Nanosci Nanotechnol. 2018;18(8):5266–5273. doi:10.1166/jnn.2018.15373
  • Zhang S, Zhang Y, Baig F, et al. Synthesis and applications of stable iron-based metal−organic framework materials. Cryst Growth Des. 2021;21:3100–3122. doi:10.1021/acs.cgd.0c01500
  • Fang Y, Yang Z, Li H, et al. MIL-100(Fe) and its derivatives: from synthesis to application for wastewater decontamination. Environ Sci Pollut Res. 2020;27:4703–4724. doi:10.1007/s11356-019-07318-w
  • Kim S-N, Gwon Park C, Huh BK, et al. Metal-organic frameworks, NH2-MIL-88(Fe), as carriers for ophthalmic delivery of brimonidine. Acta Biomater. 2018;79:344–353. doi:10.1016/j.actbio.2018.08.023
  • Liu N, Huang W, Tang M, et al. In-situ fabrication of needle-shaped MIL-53(Fe) with 1T-MoS2 and study on its enhanced photocatalytic mechanism of ibuprofen. Chem Eng J. 2019;359:254–264. doi:10.1016/j.cej.2018.11.143
  • Huang W, Shao H, Song M, et al. Perylene diimides coated Fe-MOFs as acid-tolerant photo-Fenton catalyst for phenol removal. Appl Surf Sci. 2021;547:149222. doi:10.1016/j.apsusc.2021.149222
  • Chen Y, Sun X, Biswas S, et al. Integrating polythiophene derivates to PCN-222(Fe) for electrocatalytic sensing of L-dopa. Biosens Bioelectron. 2019;141:111470. doi:10.1016/j.bios.2019.111470
  • Zheng W, Liu J, Yi D, et al. Ficin encapsulated in mesoporous metal-organic frameworks with enhanced peroxidase-like activity and colorimetric detection of glucose. Spectrochimica Acta A. 2020;233:118195. doi:10.1016/j.saa.2020.118195
  • Joseph J, Iftekhar S, Srivastava V, et al. Iron-based metal-organic framework: synthesis, structure and current technologies for water reclamation with deep insight into framework integrity. Chemosphere. 2021;284:131171. doi:10.1016/j.chemosphere.2021.131171
  • Marshall CR, Staudhammer SA, Brozek CK. Size control over metal–organic framework porous nanocrystals. Chem Sci. 2019;10:9396–9408. doi:10.1039/C9SC03802G
  • Iqbal B, Laybourn A, ul-Hamid A, et al. Size-controlled synthesis of spinel nickel ferrite nanorods by thermal decomposition of a bimetallic Fe/Ni-MOF. Ceram Int. 2021;47(9):12433–12441. doi:10.1016/j.ceramint.2021.01.100
  • Kumar S, Jain S, Nehra M, et al. Green synthesis of metal–organic frameworks: a state-of-The-art review of potential environmental and medical applications. Coordin Chem Rev. 2020;420:213407. doi:10.1016/j.ccr.2020.213407
  • Chen W, Wu C. Synthesis, functionalization, and applications of metal–organic frameworks in biomedicine. Dalton Trans. 2018;47:2114–2133. doi:10.1039/C7DT04116K
  • Zhang Y, Yang L, Yan L, et al. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coordin Chem Rev. 2019;391:69–89. doi:10.1016/j.ccr.2019.04.006
  • Zhang L, Jiejun L, Wang C, et al. A novel kaempferol electrochemical sensor based on glass carbon electrode modified by poly (3, 4-ethylenedioxythiophene) decorated with green synthesized MIL-100(Fe)-multi- walled carbon nanotubes composites, Colloid. Surface A. 2022;649:129484. doi:10.1016/j.colsurfa.2022.129484
  • Lin Y-S, Lin K-S. Characterization of the size and porous temperature sensitivity of Pluronic F127‒Coated MIL‒88B(Fe) for drug release. Micropor Mesopor Mat. 2021;328:111456. doi:10.1016/j.micromeso.2021.111456
  • Dariush Taherzade S, Rojas S, Soleimannejad J, et al. Combined cutaneous therapy using biocompatible metal-organic frameworks. Nanomaterials. 2020;10(12):2296. doi:10.3390/nano10122296
  • Bagherzadeh E, Mojtaba Zebarjad S, Madaah Hosseini HR, et al. Interplay between morphology and band gap energy in Fe-MIL-88A prepared via a high temperature surfactant-assisted solvothermal method. Mater Chem Phys. 2022;277:125536. doi:10.1016/j.matchemphys.2021.125536
  • Jun Y, Xiong W, Li X, et al. Functionalized MIL-53(Fe) as efficient adsorbents for removal of tetracycline antibiotics from aqueous solution. Micropor Mesopor Mat. 2019;290:109642. doi:10.1016/j.micromeso.2019.109642
  • Dong Y, Tianding H, Pudukudy M, et al. Influence of microwave-assisted synthesis on the structural and textural properties of mesoporous MIL-101(Fe) and NH2-MIL-101(Fe) for enhanced tetracycline adsorption. Mater Chem Phys. 2020;251:123060. doi:10.1016/j.matchemphys.2020.123060
  • Vaitsis C, Sourkouni G, Argirusis C. Metal Organic Frameworks (MOFs) and ultrasound: a review. Ultrason Sonochem. 2019;52:106–119. doi:10.1016/j.ultsonch.2018.11.004
  • Amaro-Gahete J, Klee R, Esquivel D, et al. Fast ultrasound-assisted synthesis of highly crystalline MIL-88A particles and their application as ethylene adsorbents. Ultrason Sonochem. 2019;50:59–66. doi:10.1016/j.ultsonch.2018.08.027
  • Souza BE, Möslein AF, Titov K, et al. Green reconstruction of MIL-100 (Fe) in water for high crystallinity and enhanced guest encapsulation. ACS Sustainable Chem Eng. 2020;8(22):8247–8255. doi:10.1021/acssuschemeng.0c01471
  • Jeong H, Lee J. 3D-superstructured networks comprising fe-mil-88a metalorganic frameworks under mechanochemical condition. Eur J Inorg Chem. 2019;2019:4597–4600. doi:10.1002/ejic.201900979
  • Troyano J, Çamur C, Garzón-Tovar L, et al. Spray-Drying Synthesis of MOFs, COFs, and Related Composites. Acc Chem Res. 2020;53(6):1206–1217. doi:10.1021/acs.accounts.0c00133
  • Rasmussen EG, Kramlich J, Novosselov IV. Scalable Continuous Flow Metal-Organic Framework (MOF) Synthesis Using Supercritical CO2. ACS Sustainable Chem Eng. 2020;8(26):9680–9689. doi:10.1021/acssuschemeng.0c01429
  • Haider J, Shahzadi A, Akbar MU, et al. A review of synthesis, fabrication, and emerging biomedical applications of metal-organic frameworks. Biomaterials Adv. 2022;140:213049. doi:10.1016/j.bioadv.2022.213049
  • Nikpour S, Ansari-Asl Z, Sedaghat T, et al. Curcumin-loaded Fe-MOF/PDMS porous scaffold: fabrication, characterization, and biocompatibility assessment. J Ind Eng Chem. 2022;110:188–197. doi:10.1016/j.jiec.2022.02.052
  • Wang Q, Zhao Y, Shi Z, et al. Magnetic amino functionalized MOF(M = Fe, Ti, Zr)@COFs with superior biocompatibility: performance and mechanism on adsorption of azo dyes in soft drinks. Chem Eng J. 2021;420:129955. doi:10.1016/j.cej.2021.129955
  • Gecgel C, Bulut Simsek U, Turabik M, et al. Synthesis of titanium doped iron based metal–organic frameworks and investigation of their biological activities. J Inorg Organomet P. 2020;30:749–757. doi:10.1007/s10904-019-01329-3
  • Al-Ansari DE, Al-Badr M, Zakaria ZZ, et al. Evaluation of Metal‐Organic Framework MIL-89 nanoparticles toxicity on embryonic zebrafish development. Toxicology Reports. 2022;9:951–960. doi:10.1016/j.toxrep.2022.04.016
  • Vogt A-CS, Arsiwala T, Mohsen M, et al. On Iron Metabolism and Its Regulation. Int J Mol Sci. 2021;22:4591. doi:10.3390/ijms22094591
  • Loret T, Rogerieux F, Trouiller B, et al. Predicting the in vivo pulmonary toxicity induced by acute exposure to poorly soluble nanomaterials by using advanced in vitro methods. Part Fibre Toxicol. 2018;15:25. doi:10.1186/s12989-018-0260-6
  • Chen G, Leng X, Luo J, et al. In Vitro Toxicity Study of a Porous Iron(III) Metal‒Organic Framework. Molecules. 2019;24(7):1211. doi:10.3390/molecules24071211
  • Liu C-H, Chiu H-C, Sung H-L, et al. Acute oral toxicity and repeated dose 28-day oral toxicity studies of MIL-101 nanoparticles. Regul Toxicol Pharm. 2019;107:104426. doi:10.1016/j.yrtph.2019.104426
  • Kumar P, Anand B, Tsang YF, et al. Regeneration, degradation, and toxicity effect of MOFs: opportunities and challenges. Environ Res. 2019;176:108488. doi:10.1016/j.envres.2019.05.019
  • Ettlinger R, Lächelt U, Gref R, et al. Toxicity of metal–organic framework nanoparticles: from essential analyses to potential applications. Chem Soc Rev. 2022;51:464–484. doi:10.1039/D1CS00918D
  • Yuyu Z, Weicong L, Rao C, et al. Recent Advances in Fe-MOF Compositions for Biomedical Applications. Curr Med Chem. 2021;28(30):6179–6198. doi:10.2174/0929867328666210511014129
  • Ameta RK, Koshti RR, Vyas A, et al. Fe(CN)6]4−/[Fe(CN)6]3− based metal organic ionic frameworks and impact of Fe2+/Fe3+ on material-medicinal-properties. J Mol Liq. 2018;268:677–684. doi:10.1016/j.molliq.2018.07.057
  • Du C, Zhang Y, Zhang Z, et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: a review. Chem Eng J. 2022;431(2):133932. doi:10.1016/j.cej.2021.133932
  • Nowroozi-Nejad Z, Bahramian B, Hosseinkhani S. Efficient immobilization of firefly luciferase in a metal organic framework: fe-MIL-88(NH2) as a mighty support for this purpose. Enzyme Microb Tech. 2019;121:59–67. doi:10.1016/j.enzmictec.2018.10.011
  • Bezverkhyy I, Weber G, Bellat J-P. Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: effect of temperature and pH. Micropor Mesopor Mat. 2016;219:117–124. doi:10.1016/j.micromeso.2015.07.037
  • Liu N, Wang J, Wu J, et al. Magnetic Fe3O4@MIL-53(Fe) nanocomposites derived from MIL-53(Fe) for the photocatalytic degradation of ibuprofen under visible light irradiation. Mater Res Bull. 2020;132:111000. doi:10.1016/j.materresbull.2020.111000
  • Ur Rasheed H, Xiaomeng L, Zhang S, et al. Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv Powder Technol. 2018;29(12):3305–3314. doi:10.1016/j.apt.2018.09.011
  • Chen X, Chang R, Liu H, et al. Moving research direction in the field of metallic bioresorbable stents-A mini-review. Bioact Mater. 2023;24:20–25. doi:10.1016/j.bioactmat.2022.12.004
  • Porras CA, Rouault TA. Iron Homeostasis in the CNS: an Overview of the Pathological Consequences of Iron Metabolism Disruption. Int J Mol Sci. 2022;23(9):4490. doi:10.3390/ijms23094490
  • Rafael Quijia C, Lima C, Silva C, et al. Application of MIL-100(Fe) in drug delivery and biomedicine. J Drug Deliv Sci Tec. 2021;61:102217. doi:10.1016/j.jddst.2020.102217
  • Sun Y, Zheng L, Yang Y, et al. Metal–organic framework nanocarriers for drug delivery in biomedical applications. Nano-Micro Lett. 2020;12:103. doi:10.1007/s40820-020-00423-3
  • Xin M, Lepoitevin M, Serre C. Metal–organic frameworks towards bio-medical applications. Mater Chem Front. 2021;5(15):5573–5594. doi:10.1039/D1QM00784J
  • Mallakpour S, Nikkhoo E, Mustansar Hussain C. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordin Chem Rev. 2022;451:214262. doi:10.1016/j.ccr.2021.214262
  • Manzano M, Vallet-Regí M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv Funct Mater. 2020;30:1902634. doi:10.1002/adfm.201902634
  • Wang Z-X, Wang Z, Fu-Gen W. Carbon dots as drug delivery vehicles for antimicrobial applications: a minireview. Chem Med Chem. 2022;17:e202200003. doi:10.1002/cmdc.202200003
  • Servatan M, Zarrintaj P, Mahmodi G, et al. Zeolites in drug delivery: progress, challenges and opportunities. Drug Discov Today. 2020;25(4):642–656. doi:10.1016/j.drudis.2020.02.005
  • Siyu H, Wu L, Li X, et al. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B. 2021;11(8):2362–2395. doi:10.1016/j.apsb.2021.03.019
  • Cai W, Wang J, Chu C, et al. Metal–organic framework-based stimuli-responsive systems for drug delivery. Adv Sci. 2019;6:1801526. doi:10.1002/advs.201801526
  • Darvishi S, Javanbakht S, Heydari A, et al. Ultrasound-assisted synthesis of MIL-88(Fe) coordinated to carboxymethyl cellulose fibers: a safe carrier for highly sustained release of tetracycline. Int J Biol Macromol. 2021;181:937–944. doi:10.1016/j.ijbiomac.2021.04.092
  • Liu XB, Liang TT, Zhang RT, et al. Iron-Based Metal-Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl Mater Interfaces. 2021;13 8 :9643–9655. doi:10.1021/acsami.0c21486
  • Bui A, Guillen SG, Sua A, et al. Iron-containing metal-organic framework thin film as a drug delivery system. Colloid Surface A. 2022;650:129611. doi:10.1016/j.colsurfa.2022.129611
  • Guillen SG, Parres-Gold J, Ruiz A, et al. pH-responsive metal-organic framework thin film for drug delivery. Langmuir. 2022;38(51):16014–16023. doi:10.1021/acs.langmuir.2c02497
  • Nejadshafiee V, Naeimi H, Goliaei B, et al. Magnetic bio-metal–organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. Mat Sci Eng C. 2019;99:805–815. doi:10.1016/j.msec.2019.02.017
  • Li X, Lachmanski L, Safi S, et al. New insights into the degradation mechanism of metal-organic frameworks drug carriers. Sci Rep. 2017;7:13142. doi:10.1038/s41598-017-13323-1
  • Strzempek W, Menaszek E, Gil B. Fe-MIL-100 as drug delivery system for asthma and chronic obstructive pulmonary disease treatment and diagnosis. Micropor Mesopor Mat. 2019;280:264–270. doi:10.1016/j.micromeso.2019.02.018
  • Latifi L, Sohrabnezhad S. Drug delivery by micro and meso metal-organic frameworks. Polyhedron. 2020;180:114321. doi:10.1016/j.poly.2019.114321
  • Ji HB, Kim CR, Min CH, et al. Fe-containing metal-organic framework with D-penicillamine for cancer-specific hydrogen peroxide generation and enhanced chemodynamic therapy. Bioeng Transl Med. 2023;8:e10477. doi:10.1002/btm2.10477
  • Lajevardi A, Hossaini Sadr M, Badiei A, et al. Synthesis and characterization of Fe3O4@SiO2@MIL-100(Fe) nanocomposite: a nanocarrier for loading and release of celecoxib. J Mol Liq. 2020;307:112996. doi:10.1016/j.molliq.2020.112996
  • Wang Y, Zhang J, Zhang C, et al. Functional-protein-assisted fabrication of fe–gallic acid coordination polymer nanonetworks for localized photothermal therapy. ACS Sustainable Chem Eng. 2019;7(1):994–1005. doi:10.1021/acssuschemeng.8b04656
  • Yao XX, Chen DY, Zhao B, et al. Acid-Degradable Hydrogen-Generating Metal-Organic Framework for Overcoming Cancer Resistance/Metastasis and Off-Target Side Effects. Adv Sci. 2022;9:2101965. doi:10.1002/advs.202101965
  • Gisela Quintero-álvarez F, Karina Rojas-Mayorga C, et al. Physicochemical Modeling of the Adsorption of Pharmaceuticals on MIL-100-Fe and MIL-101-Fe MOFs. Adsorpt Sci Technol. 2022;4482263. doi:10.1155/2022/4482263
  • Lin S, Liu X, Tan L, et al. Porous Iron-Carboxylate Metal–Organic Framework: a Novel Bioplatform with Sustained Antibacterial Efficacy and Nontoxicity. ACS Appl Mater Interfaces. 2017;9(22):19248–19257. doi:10.1021/acsami.7b04810
  • Unamuno X, Imbuluzqueta E, Salles F, et al. Biocompatible porous metal-organic framework nanoparticles based on Fe or Zr for gentamicin vectorization. Eur J Pharm Biopharm. 2018;132:11–18. doi:10.1016/j.ejpb.2018.08.013
  • Nur Hasan M, Bera A, Maji TK, et al. Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorg Chim Acta. 2021;523:120381. doi:10.1016/j.ica.2021.120381
  • Du L, Chen W, Zhu P, et al. Applications of functional metal-organic frameworks in biosensors. Biotechnol J. 2021;16:1900424. doi:10.1002/biot.201900424
  • Bieniek A, Terzyk AP, Wiśniewski M, et al. MOF materials as therapeutic agents, drug carriers, imaging agents and biosensors in cancer biomedicine: recent advances and perspectives. Prog Mater Sci. 2021;117:100743. doi:10.1016/j.pmatsci.2020.100743
  • Liao X, Haomin F, Yan T, et al. Electroactive metal–organic framework composites: design and biosensing application. Biosens Bioelectron. 2019;146:111743. doi:10.1016/j.bios.2019.111743
  • Guo L, Zhaode M, Yan B, et al. A novel electrochemical biosensor for sensitive detection of non-small cell lung cancer ctDNA using NG-PEI-COFTAPB-TFPB as sensing platform and Fe-MOF for signal enhancement. Sensor Actuat B-Chem. 2022;350:130874. doi:10.1016/j.snb.2021.130874
  • Xu WQ, Jiao L, Yan HY, et al. Glucose oxidase-integrated metal–organic framework hybrids as biomimetic cascade nanozymes for ultrasensitive glucose biosensing. ACS Appl Mater Interfaces. 2019;11 25 :22096–22101. doi:10.1021/acsami.9b03004
  • Mao XX, He FN, Qiu D, et al. Efficient Biocatalytic System for Biosensing by Combining Metal- Organic Framework (MOF)-Based Nanozymes and G-Quadruplex (G4)-DNAzymes. Anal Chem. 2022;94(20):7295–7302. doi:10.1021/acs.analchem.2c00600
  • Tong PH, Wang JJ, Hu X-L, et al. Metal-organic framework (MOF) hybridized gold nanoparticles as a bifunctional nanozyme for glucose sensing. Chem Sci. 2023;14:7762–7769. doi:10.1039/D3SC02598E
  • Let S, Samanta P, Dutta S, et al. A Dye@MOF composite as luminescent sensory material for selective and sensitive recognition of Fe(III) ions in water. Inorg Chim Acta. 2020;500:119205. doi:10.1016/j.ica.2019.119205
  • Zhou ZY, Wang J, Hou S, et al. Room Temperature Synthesis Mediated Porphyrinic NanoMOF Enables Benchmark Electrochemical Biosensing. Small;2023. 2301933. doi:10.1002/smll.202301933
  • Ding Z, Lu Y, Wei Y, et al. DNA-Engineered iron-based metal-organic framework bio-interface for rapid visual determination of exosomes. J Colloid Interf Sci. 2022;612:424–433. doi:10.1016/j.jcis.2021.12.133
  • Yan W, Zhou J, Jiang Y-S, et al. Silver Nanoparticles@Metal-Organic Framework as Peroxidase Mimics for Colorimetric Determination of Hydrogen Peroxide and Blood Glucose. Chinese J Anal Chem. 2022;50(12):100187. doi:10.1016/j.cjac.2022.100187
  • Zhu N, Lantian G, Wang J, et al. Novel and Sensitive Chemiluminescence Sensors Based on 2D-MOF Nanosheets for One-Step Detection of Glucose in Human Urine. J Phys Chem C. 2019;123(14):9388–9393. doi:10.1021/acs.jpcc.9b00671
  • Yao J, Xie Z, Zeng X, et al. Bimetallic Eu/Fe-MOFs ratiometric fluorescent nanoenzyme for selective cholesterol detection in biological serum: synthesis, characterization, mechanism and DFT calculations. Sensor Actuat B-Chem. 2022;354:130760. doi:10.1016/j.snb.2021.130760
  • Zhang Y, Feng Y-S, Ren X-H, et al. Bimetallic molecularly imprinted nanozyme: dual-mode detection platform. Biosens Bioelectron. 2022;196:113718. doi:10.1016/j.bios.2021.113718
  • Jiang Y, Yang Q-M, Xu Q-J, et al. Metal organic framework MIL-53(Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols. Anal Biochem. 2019;577:82–88. doi:10.1016/j.ab.2019.04.020
  • Jungyeon J, So Yeon K, Choi KM, et al. Hydrogen peroxide sensor using the biomimetic structure of peroxidase including a metal organic framework. Appl Surf Sci. 2021;554:148786. doi:10.1016/j.apsusc.2020.148786
  • Ling P-H, Zang X-N, Qian C-H, et al. A metal–organic framework with multienzyme activity as a biosensing platform for real-time electrochemical detection of nitric oxide and hydrogen peroxide. Analyst. 2021;146:2609. doi:10.1039/D1AN00142F
  • Tu RX, Wang YJ, Peng JY, et al. Integration of multiple redox centers into porous coordination networks for ratiometric sensing of dissolved oxygen. ACS Appl Mater Interfaces. 2021;13 34 :40847–40852. doi:10.1021/acsami.1c13601
  • Hou C, Zhao D, Wang Y, et al. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J Electroanal Chem. 2018;822:50–56. doi:10.1016/j.jelechem.2018.04.067
  • Wang L, Zhang Y, Li X, et al. The MIL-88A-Derived Fe3O4-Carbon Hierarchical Nanocomposites for Electrochemical Sensing. Sci Rep. 2015;5:14341. doi:10.1038/srep14341
  • Basaleh AS, Sheta SM. Novel advanced nanomaterial based on ferrous metal–organic framework and its application as chemosensors for mercury in environmental and biological samples. Anal Bioanal Chem. 2020;412:3153–3165. doi:10.1007/s00216-020-02566-z
  • Wang X-N, Zhao Y, Li J-L, et al. Biomimetic catalysts of iron-based metal–organic frameworks with high peroxidase-mimicking activity for colorimetric biosensing. Dalton Trans. 2021;50:3854–3861. doi:10.1039/D0DT02504F
  • Daniel M, Mathew G, Anpo M, et al. MOF based electrochemical sensors for the detection of physiologically relevant biomolecules: an overview. Coordin Chem Rev. 2022;468:214627. doi:10.1016/j.ccr.2022.214627
  • Mohan B, Kumar S, Xi H, et al. Fabricated Metal-Organic Frameworks (MOFs) as luminescent and electrochemical biosensors for cancer biomarkers detection. Biosens Bioelectron. 2022;197:113738. doi:10.1016/j.bios.2021.113738
  • Liang A, Zhao Y, Huang X, et al. A facile and sensitive fluorescence assay for glucose via hydrogen peroxide based on MOF-Fe catalytic oxidation of TMB. Spectrochim Acta A. 2022;265:120376. doi:10.1016/j.saa.2021.120376
  • Aguilar-Palma R, Malankowska M, Coronas J. Applications of metal-organic frameworks and zeolites to virus detection and control: biosensors, barriers, and biocomposites, Z. Anorg Allg Chem. 2021;647:1532–1541. doi:10.1002/zaac.202000453
  • Chen K, Wu C-D. Designed fabrication of biomimetic metal–organic frameworks for catalytic applications. Coordin Chem Rev. 2019;378:445–465. doi:10.1016/j.ccr.2018.01.016
  • Wu P, Gong F, Feng X, et al. Multimetallic nanoparticles decorated metal-organic framework for boosting peroxidase-like catalytic activity and its application in point-of-care testing. J Nanobiotechnol. 2023;21:185. doi:10.1186/s12951-023-01946-8
  • Zhu G, Wang S, Yu Z, et al. Application of Fe‑MOFs in advanced oxidation processes. Res Chem Int. 2019;45:3777–3793. doi:10.1007/s11164-019-03820-5
  • Tocco Cristina Carucci D, Todde D, Todde D, et al. Enzyme immobilization on metal organic frameworks: laccase from Aspergillus sp. is better adapted to ZIF-zni rather than Fe-BTC. Colloid Surface B. 2021;208:112147. doi:10.1016/j.colsurfb.2021.112147
  • Kesse X, Sicard C, Steunou N, et al. Encapsulation of Microperoxidase-8 into MIL-101(Cr/Fe) Nanoparticles: a New Biocatalyst for the Epoxidation of Styrene. Eur J Inorg Chem. 2023;26:e202300040. doi:10.1002/ejic.202300040
  • Tian D, Hao R, Zhang X, et al. Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis. Nat Commun. 2023;14:3226. doi:10.1038/s41467-023-38949-w
  • Xiang X, Pang H, Ma T, et al. Ultrasound targeted microbubble destruction combined with Fe-MOF based bio-/enzyme-mimics nanoparticles for treating of cancer. J Nanobiotechnol. 2021;19:92. doi:10.1186/s12951-021-00835-2
  • Li SF, Chen Y, Wang Y-S, et al. Integration of enzyme immobilization and biomimetic catalysis in hierarchically porous metal-organic frameworks for multi-enzymatic cascade reactions. Sci China Chem. 2022;65:1122–1128. doi:10.1007/s11426-022-1254-5
  • Qin J-S, Yuan S, Lollar C, et al. Stable metal–organic frameworks as a host platform for catalysis and biomimetics. Chem Commun. 2018;54:4231–4249. doi:10.1039/C7CC09173G
  • Liu J, Liang J, Xue J, et al. Metal–Organic Frameworks as a Versatile Materials Platform for Unlocking New Potentials in Biocatalysis. Small. 2021;17:2100300. doi:10.1002/smll.202100300
  • Fandzloch M, Maldonado CR, Navarro JAR, et al. Biomimetic 1‑Aminocyclopropane-1-Carboxylic Acid Oxidase Ethylene Production by MIL-100(Fe)-Based Materials. ACS Appl Mater Interfaces. 2019;11:34053–34058. doi:10.1021/acsami.9b13361
  • Wang JN, Bao MY, Wei TX, et al. Bimetallic metal–organic framework for enzyme immobilization by biomimetic mineralization: constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal Chim Acta. 2020;1098:148–154. doi:10.1016/j.aca.2019.11.039
  • Liu X, Wei Q, Wang Y, et al. Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal-Organic Frameworks. ACS Appl Mater Interfaces. 2018;10(39):33407–33415. doi:10.1021/acsami.8b09388
  • Liang J, Johannessen B, Wu Z, et al. Regulating the Coordination Environment of Mesopore-Confined Single Atoms from Metalloprotein-MOFs for Highly Efficient Biocatalysis. Adv Mater. 2022;34:2205674. doi:10.1002/adma.202205674
  • Yang J, Li J, Ng DHL, et al. Micromotor-Assisted Highly Efficient Fenton Catalysis by Laccase/Fe-BTC-NiFe2O4 Nanozyme Hybrid with 3D Hierarchical Structure. Environ Sci-Nano. 2020;7 9 :2573–2583. doi:10.1039/c9en01443h
  • Yang Q, Chena D, Chu L, et al. Enhancement of ionizing radiation-induced catalytic degradation of antibiotics using Fe/C nanomaterials derived from Fe-based MOFs. J Hazard Mater. 2020;389:122148. doi:10.1016/j.jhazmat.2020.122148
  • Zhao Y, Jiang X, Liu X, et al. Application of photo-responsive metal-organic framework in cancer therapy and bioimaging. Front Bioeng Biotechnol. 2022;10:1031986. doi:10.3389/fbioe.2022.1031986
  • Zheng Q, Liu X, Zheng Y, et al. The recent progress on metal–organic frameworks for phototherapy. Chem Soc Rev. 2021;50:5086–5125. doi:10.1039/d1cs00056j
  • Nikazar S, Barani M, Rahdar A, et al. Photo- and Magnetothermally Responsive Nanomaterials for Therapy, Controlled Drug Delivery and Imaging Applications. ChemistrySelect. 2020;5:12590–12609. doi:10.1002/slct.202002978
  • Rojas JD, Joiner JB, Velasco B, et al. Validation of a combined ultrasound and bioluminescence imaging system with magnetic resonance imaging in orthotopic pancreatic murine tumors. Sci Rep. 2022;12:102. doi:10.1038/s41598-021-03684-z
  • Zhiming H, Caina X, Liang Y, et al. Multifunctional drug delivery nanoparticles based on MIL-100 (Fe) for photoacoustic imaging-guided synergistic chemodynamic/chemo/photothermal breast cancer therapy. Mater Design. 2022;223:111132. doi:10.1016/j.matdes.2022.111132
  • Cai X, Deng X, Xie Z, et al. Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. Chem Eng J. 2019;358:369–378. doi:10.1016/j.cej.2018.10.044
  • Sui C, Tan R, Chen Y, et al. MOFs-Derived Fe–N Codoped Carbon Nanoparticles as O 2 -Evolving Reactor and ROS Generator for CDT/PDT/PTT Synergistic Treatment of Tumors. Bioconjugate Chem. 2021;32:318–327. doi:10.1021/acs.bioconjchem.0c00694
  • Peller M, Böll K, Zimpel A, et al. Metal–organic framework nanoparticles for magnetic resonance imaging. Inorg Chem Front. 2018;5:1760–1779. doi:10.1039/C8QI00149A
  • Böll K, Zimpel A, Dietrich O, et al. Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Iron-Based MOF Nanocarrier: a Systematic Investigation in a Clinical MRI Setting. Adv Therap. 2020;3:1900126. doi:10.1002/adtp.201900126
  • Wang Z, Wanjian Y, Yu N, et al. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors. Chem Eng J. 2020;400:125877. doi:10.1016/j.cej.2020.125877
  • Alanagh Hamideh R, Akbari B, Fathi P, et al. Biodegradable MRI Visible Drug Eluting Stent Reinforced by Metal Organic Frameworks. Adv Healthcare Mater. 2020;9:2000136. doi:10.1002/adhm.202000136
  • Liu P, Zhou Y, Shi X, et al. A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. J Nanobiotechnol. 2021;19:149. doi:10.1186/s12951-021-00893-6
  • Permyakova A, Kakar A, Bachir J, et al. In Situ Synthesis of a Mesoporous MIL-100(Fe) Bacteria Exoskeleton. ACS Materials Lett. 2023;5(1):79–84. doi:10.1021/acsmaterialslett.2c00820
  • Demir Duman F, Forgan RS. Applications of nanoscale metal–organic frameworks as imaging agents in biology and medicine. J Mater Chem B. 2021;9:3423–3449. doi:10.1039/D1TB00358E
  • Zhang WM, Wang J, Su LC, et al. Activatable nanoscale metal-organic framework for ratiometric photoacoustic imaging of hydrogen sulfide and orthotopic colorectal cancer in vivo. Sci China Chem. 2020 63 9 ;1315–1322. doi:10.1007/s11426-020-9775-y
  • Wang L, Qu XZ, Zhao YX, et al. Exploiting Single Atom Iron Centers in a Porphyrin-like MOF for Efficient Cancer Phototherapy. ACS Appl Mater Interfaces. 2019;11 38 :35228–35237. doi:10.1021/acsami.9b11238
  • Zheng X, Zhong J, Dong M-Y, et al. Synthesis of porphyrin-based 2D ytterbium metal organic frameworks for efficient photodynamic therapy. RSC Adv. 2022;12:34318. doi:10.1039/D2RA06655F
  • Cai X, Liu B, Pang M, et al. Interfacially synthesized Fe- soc -MOF nanoparticles combined with ICG for photothermal/photodynamic therapy. Dalton Trans. 2018;47:16329–16336. doi:10.1039/C8DT02941E
  • Jingchao H, Ramachandraiah K, Huang T, et al. Core-shell structured hollow copper sulfide@metal-organic framework for magnetic resonance imaging guided photothermal therapy in second near-infrared biological window. Biochem Bioph Res Co. 2023;638:51–57. doi:10.1016/j.bbrc.2022.11.036
  • Yao J, Liu Y, Wang J, et al. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials. 2019;195:51–62. doi:10.1016/j.biomaterials.2018.12.029
  • Wang Z, Liu B, Sun QQ, et al. Upconverted Metal−Organic Framework Janus Architecture for Near-Infrared and Ultrasound Co-Enhanced High Performance Tumor Therapy. ACS Nano. 2021;15 7 :12342–12357. doi:10.1021/acsnano.1c04280
  • Bao Z, Kexin L, Hou P, et al. Nanoscale metal-organic framework composites for phototherapy and synergistic therapy of cancer. Mater Chem Front. 2021;5:1632. doi:10.1039/D0QM00786B
  • Huang X, Sun X, Wang W, et al. Nanoscale metal–organic frameworks for tumor phototherapy. J Mater Chem B. 2021;9:3756–3777. doi:10.1039/D1TB00349F
  • Li R, Chen TT, Pan XL. Metal−Organic-Framework Based Materials for Antimicrobial Applications. ACS Nano. 2021;15 3 :3808–3848. doi:10.1021/acsnano.0c09617
  • Joakim Larsson DG, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–269. doi:10.1038/s41579-021-00649-x
  • Ghosh C, Sarkar P, Issa R, et al. Alternatives to Conventional Antibioticsinthe Era of Antimicrobial Resistance. Trends Microbiol. 2019;27:4. doi:10.1016/j.tim.2018.12.010
  • Gorniak I, Bartoszewski R, et al. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev. 2019;18 1 :241–272. doi:10.1007/s11101-018-9591-z
  • Ciulla MG, Gelain F. Structure–activity relationships of antibacterial peptides. Microb Biotechnol. 2023;16 4 :757–777. doi:10.1111/1751-7915.14213
  • Fan XZ, Yahia L, Sacher, E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. Biology-Basel. 2021;10 2 :137. doi:10.3390/biology10020137
  • Gharpure S, Akash A, Ankamwar B. A Review on Antimicrobial Properties of Metal Nanoparticles. J Nanosci Nanotechnol. 2020 20 6 :3303–3339. doi:10.1166/jnn.2020.17677
  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, et al. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photoch Photobio B. 2019;192:74–82. doi:10.1016/j.jphotobiol.2018.12.025
  • Kumar Dey U, Sankar Maiti P, Koley T, et al. Development of nano–magnesium oxide modified hybrid resin system for antimicrobial coating. J Coat Technol Res. 2023;20(1):223–231. doi:10.1007/s11998-022-00650-w
  • Razaviamri S, Wang K, Liu B, et al. Catechol-Based Antimicrobial Polymers. Molecules. 2021;26:559. doi:10.3390/molecules26030559
  • Mao D, Fang H, Ji S, et al. Metal–Organic-Framework-Assisted In Vivo Bacterial Metabolic Labeling and Precise Antibacterial Therapy. Adv Mater. 2018;30:1706831. doi:10.1002/adma.201706831
  • Pettinari C, Pettinari R, Di Nicola C, et al. Antimicrobial MOFs. Coordin Chem Rev. 2021;446:214121. doi:10.1016/j.ccr.2021.214121
  • Rubin HN, Neufeld BH, Reynolds MM. Surface-anchored metal–organic framework–cotton material for tunable antibacterial copper delivery. ACS Appl Mater Interfaces. 2018;10(17):15189–15199. doi:10.1021/acsami.7b19455
  • Sheta SM, Salem SR, El‑Sheikh SM. A novel Iron (III)‑based MOF: synthesis, characterization, biological, and antimicrobial activity study. J Mater Res. 2022;37(14):2357–2367. doi:10.1557/s43578-022-00644-9
  • Golmohamadpour A, Bahramian B, Khoobi M, et al. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn Photodyn Therapy. 2018;23:331–338. doi:10.1016/j.pdpdt.2018.08.004
  • Claes B, Boudewijns T, Muchez L, et al. Smart metal–organic framework coatings: triggered antibiofilm compound release. ACS Appl Mater Interfaces. 2017;9(5):4440–4449. doi:10.1021/acsami.6b14152
  • Caamaño K, Heras-Mozos R, Calbo J, et al. Exploiting the Redox Activity of MIL-100(Fe) Carrier Enables Prolonged Carvacrol Antimicrobial Activity. ACS Appl Mater Interfaces. 2022;14:10758–10768. doi:10.1021/acsami.1c21555
  • Yang M, Zhang J, Wei Y, et al. Recent advances in metal-organic framework-based materials for anti-staphylococcus aureus infection. Nano Res. 2022;15:6220–6242. doi:10.1007/s12274-022-4302-x
  • Huang X, Shijiang Y, Lin W, et al. A metal-organic framework MIL-53(Fe) containing sliver ions with antibacterial property. J Solid State Chem. 2021;302:122442. doi:10.1016/j.jssc.2021.122442
  • Liu Y, Zhou L, Dong Y, et al. Recent developments on MOF-based platforms for antibacterial therapy. RSC Med Chem. 2021;12:915–928. doi:10.1039/D0MD00416B
  • Reza Ramezani M, Ansari-Asl Z, Hoveizi E, et al. Polyacrylonitrile/Fe(III) metal-organic framework fibrous nanocomposites designed for tissue engineering applications. Mater Chem Phys. 2019;229:242–250. doi:10.1016/j.matchemphys.2019.03.031
  • Zhao J, Wei F, Xu W, et al. Enhanced antibacterial performance of gelatin/chitosan film containing capsaicin loaded MOFs for food packaging. Appl Surf Sci. 2020;510:145418. doi:10.1016/j.apsusc.2020.145418
  • Uthappa UT, Sriram G, Arvind OR, et al. Engineering MIL-100(Fe) on 3D porous natural diatoms as a versatile high performing platform for controlled isoniazid drug release, Fenton’s catalysis for malachite green dye degradation and environmental adsorbents for Pb2+ removal and dyes. Appl Surf Sci. 2020;528:146974. doi:10.1016/j.apsusc.2020.146974
  • Zhang X, Peng F, Wang D. MOFs and MOF-derived materials for antibacterial application. J Funct Biomater. 2022;13:215. doi:10.3390/jfb13040215
  • Nong WQ, Wu J, Ghiladi RA, et al. The structural appeal of metal–organic frameworks in antimicrobial applications. Coordin Chem Rev. 2021;442:214007. doi:10.1016/j.ccr.2021.214007