153
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Modified FGF Hydrogel for Effective Axon Formation by Enhanced Regeneration of Myelin Sheath of Schwann Cells Using Rat Model

, , , , ORCID Icon &
Pages 7225-7236 | Received 05 May 2023, Accepted 09 Nov 2023, Published online: 04 Dec 2023

References

  • Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci. 2020;21(7):366–383. doi:10.1038/s41583-020-0314-2
  • Angeli CA, Boakye M, Morton RA, et al. Recovery of over-ground walking after chronic motor complete spinal cord injury. N Engl J Med. 2018;379(13):1244–1250. doi:10.1056/NEJMoa1803588
  • Hawryluk GWJ, Mothe A, Wang J, et al. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev. 2012;21(12):2222–2238. doi:10.1089/scd.2011.0596
  • Fouad K, Popovich PG, Kopp MA, Schwab JM. The neuroanatomical–functional paradox in spinal cord injury. Nat Rev Neurol. 2020;17(1):53–62. doi:10.1038/s41582-020-00436-x
  • Filli L, Engmann AK, Zrner B, Weinmann O, Schwab ME. Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury. Neurosci J. 2014;34(40):13399–13410. doi:10.1523/JNEUROSCI.0701-14.2014
  • Presta M, Dell’Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev. 2005;16(2):159–178. doi:10.1016/j.cytogfr.2005.01.004
  • Livingston MJ, Shu S, Fan Y, et al. Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy. 2023;19(1):256–277. doi:10.1080/15548627.2022.2072054
  • Nikolaou PE, Mylonas N, Makridakis M, et al. Cardioprotection by selective SGLT-2 inhibitors in a non-diabetic mouse model of myocardial ischemia/reperfusion injury: a class or a drug effect? Basic Res Cardiol. 2022;117(1):1–27. doi:10.1007/s00395-022-00934-7
  • Koketsu N, Berlove DJ, Moskowitz MA, et al. Pretreatment with intraventricular basic fibroblast growth factor decreases infarct size following focal cerebral ischemia in rats. Ann Neurol. 2010;35(4):451–457. doi:10.1002/ana.410350413
  • Wada K, Sugimori H, Bhide PG, Moskowitz MA, Finklestein SP. Effect of basic fibroblast growth factor treatment on brain progenitor cells after permanent focal ischemia in rats. Stroke. 2003;34:2722–2728. doi:10.1161/01.STR.0000094421.61917.71
  • Rabchevsky AG, Fugaccia I, Fletcher-Turner A, et al. Basic fibroblast growth factor (bFGF) enhances tissue sparing and functional recovery following moderate spinal cord injury. J Neurotrauma. 1999;16(9):817. doi:10.1089/neu.1999.16.817
  • Shi Q, Gao W, Han X, et al. Collagen scaffolds modified with collagen-binding bFGF promotes the neural regeneration in a rat hemisected spinal cord injury model. Sci China Life Sci. 2014;
  • Wang Z, Zhang Y, Yin Y, et al. High-strength and injectable supramolecular hydrogel self-assembled by monomeric nucleoside for tooth-extraction wound healing. Adv Mater. 2022;34:e2108300. doi:10.1002/adma.202108300
  • Wang W, Zeng Z, Xiang L, Liu C, Zeng H. Injectable self-healing hydrogel via biological environment-adaptive supramolecular assembly for gastric perforation healing. ACS nano. 2021;15(6):9913–9923. doi:10.1021/acsnano.1c01199
  • Tang Q, Plank TN, Zhu T, Yu H, Pei H. Self-assembly of metallo-nucleoside hydrogels for injectable materials that promote wound closure. ACS Appl Mater Interfaces. 2019;11(22):19743–19750. doi:10.1021/acsami.9b02265
  • Wang KY, Jin XY, Ma YH, Cai WJ, Ding J. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. J Nanobiotechnology. 2021;19:1–16.
  • Gao F, Xu Z, Liang Q, et al. Osteochondral regeneration with 3D‐printed biodegradable high‐strength supramolecular polymer reinforced‐gelatin hydrogel scaffolds. Adv Sci. 2019;6(15):1900867. doi:10.1002/advs.201900867
  • Wang DA, Varghese S, Sharma B, et al. Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat Mater. 2007;6(5):385–392. doi:10.1038/nmat1890
  • Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials. Lancet Neurology. 2022;21(7):659–670. doi:10.1016/S1474-4422(21)00464-6
  • Freund P, Seif M, Weiskopf N, et al. MRI in traumatic spinal cord injury: from clinical assessment to neuroimaging biomarkers. Lancet Neurology. 2019;18(12):1123–1135. doi:10.1016/S1474-4422(19)30138-3
  • Bregman BS, Kunkel-Bagden E, Schnell L, et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature. 1995;378(6556):498–501. doi:10.1038/378498a0
  • Janova H, Arinrad S, Balmuth E, Mitjans M, Nave KA. Microglia ablation alleviates myelin-associated catatonic signs in mice. J Clin Invest. 2018;128(2):734–745. doi:10.1172/JCI97032
  • Jakel S, Agirre E, Mendanha Falcão A, et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature. 2019;566(7745):543–547. doi:10.1038/s41586-019-0903-2
  • Stavely R, Hotta R, Picard N, et al. Schwann cells in the subcutaneous adipose tissue have neurogenic potential and can be used for regenerative therapies. Sci Transl Med. 2022;14(646):eabl8753. doi:10.1126/scitranslmed.abl8753
  • Belavgeni A, Maremonti F, Stadtmüller M, Bornstein SR, Linkermann A. Schwann cell necroptosis in diabetic neuropathy. Proc Natl Acad Sci. 2022;119(17):e2204049119. doi:10.1073/pnas.2204049119
  • Susuki K, Raphael AR, Ogawa Y, et al. Schwann cell spectrins modulate peripheral nerve myelination. Proc Natl Acad Sci U S A. 2011;108(19):8009–8014. doi:10.1073/pnas.1019600108
  • Varadarajan SG, Hunyara JL, Hamilton NR, Kolodkin AL, Huberman AD. Central nervous system regeneration. Cell. 2022;185(1):77–94. doi:10.1016/j.cell.2021.10.029
  • Lvarez Z, Kolberg-Edelbrock AN, Sasselli IR, et al. Bioactive scaffolds with enhanced supramolecular motion promote recovery from spinal cord injury. Science. 2021;374(6569):848–856. doi:10.1126/science.abh3602
  • Rajendran R, Bttiger G, Stadelmann C, Karnati S, Berghoff M. FGF/FGFR pathways in multiple sclerosis and in its disease models. Cells. 2021;10(4):884. doi:10.3390/cells10040884
  • Ge MH, Tian H, Mao L, et al. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci Ther. 2021;27(9):1023–1040. doi:10.1111/cns.13657
  • Zhao H, Mei X, Yang D, Tu G. Resveratrol inhibits inflammation after spinal cord injury via SIRT-1/NF-κB signaling pathway. Neurosci Lett. 2021;762:136151. doi:10.1016/j.neulet.2021.136151
  • Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. doi:10.1038/s41392-021-00830-x
  • Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405–414. doi:10.1038/nmeth.3839
  • Lin W, Kluzek M, Iuster N, et al. Cartilage-inspired, lipid-based boundary-lubricated hydrogels. Science. 2020;370:335.
  • Chaudhuri O, Gu L, Darnell M, et al. Substrate stress relaxation regulates cell spreading. Nat Commun. 2015;6(1):6364. doi:10.1038/ncomms7365
  • Wei Q, Young J, Holle A, Li J, Cavalcanti-Adam EA. Soft hydrogels for balancing cell proliferation and differentiation. ACS Biomater Sci Eng. 2020;6(8):4687–4701. doi:10.1021/acsbiomaterials.0c00854
  • Madl CM, LeSavage BL, Dewi RE, et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat Mater. 2017;16(12):1233–1242. doi:10.1038/nmat5020
  • Ahearne M. Introduction to cell-hydrogel mechanosensing. Inter Focus Theme Suppl J Royal Soc Interface. 2014;4:20130038.
  • Yang B, Wei K, Loebel C, Zhang K, Bian L. Enhanced mechanosensing of cells in synthetic 3D matrix with controlled biophysical dynamics. Nat Commun. 2021;12(1):3514.