479
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Emerging Anesthetic Nanomedicines: Current State and Challenges

, , , , , , & show all
Pages 3913-3935 | Received 19 Apr 2023, Accepted 10 Jul 2023, Published online: 19 Jul 2023

References

  • Patterson R. Dr Charles Thomas Jackson’s (1805–80) life after death: the 20th century mythology. J Med Biogr. 2007;15(3):147–152. doi:10.1258/j.jmb.2007.06-17
  • Barttfelda P, Uhriga L, Sitta JD, et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc Natl Acad Sci U S A. 2015;112(3):887–892. doi:10.1073/pnas.1418031112
  • Kamel I, Ahmed M, Sethi A. Regional anesthesia for orthopedic procedures: what orthopedic surgeons need to know. World J Orthop. 2022;13(1):11–35. doi:10.5312/wjo.v13.i1.11
  • Izaki S, Hayama K, Fujita H. A case of contact dermatitis due to dental surface anaesthetic. Contact Dermatitis. 2021;84(3):210–212. doi:10.1111/cod.13716
  • Flanagan DF. The effectiveness of articaine in mandibular facial infiltrations. Local Reg Anesth. 2015;9:1–6. doi:10.2147/LRA.S94647
  • Atanassoff PG, Lobato A, Aguilar JL. Intravenous regional anesthesia with long-acting local anesthetics. An update. Rev Esp Anestesiol Reanim. 2014;61(2):87–93. doi:10.1016/j.redar.2013.08.006
  • Scholz A. Mechanisms of (local) anaesthetics on voltage-gated sodium and other ion channels. Br J Anaesth. 2002;89(1):52–61. doi:10.1093/bja/aef163
  • Hussain N, Brull R, Sheehy B, et al. Perineural liposomal bupivacaine is not superior to nonliposomal bupivacaine for peripheral nerve block analgesia: a systematic review and meta-analysis. Anesthesiology. 2021;134(2):147–164. doi:10.1097/ALN.0000000000003651
  • Yanagidate F, Strichartz GR. Local anesthetics. Handb Exp Pharmacol. 2007;177:95–127. doi:10.1007/978-3-540-33823-9_4
  • Neuman MD, Feng R, Carson JL, et al. Spinal anesthesia or general anesthesia for hip surgery in older adults. N Engl J Med. 2021;385(22):2025–2035. doi:10.1056/nejmoa2113514
  • Hemmings HC, Riegelhaupt PM, Kelz MB, et al. Towards a comprehensive understanding of anesthetic mechanisms of action: a decade of discovery. Trends Pharmacol Sci. 2019;40(7):464–481. doi:10.1016/j.tips.2019.05.001
  • Kim JJ, Gharpure A, Teng J, et al. Shared structural mechanisms of general anaesthetics and benzodiazepines. Nature. 2020;585(7824):303–308. doi:10.1038/s41586-020-2654-5
  • Brown EN, Pavone KJ, Naranjo M. Multimodal general anesthesia: theory and practice. Anesth Analg. 2018;127(5):1246–1258. doi:10.1213/ANE.0000000000003668
  • He Y, Qin L, Huang Y, Ma C. Advances of nano-structured extended-release local anesthetics. Nanoscale Res Lett. 2020;15(1):13. doi:10.1186/s11671-019-3241-2
  • Weil AR. Precision medicine. Health Aff. 2018;37(5):687. doi:10.1377/hlthaff.2018.0520
  • Mi P, Cabral H, Kataoka K. Ligand-installed nanocarriers toward precision therapy. Adv Mater. 2020;32(13):e1902604. doi:10.1002/adma.201902604
  • Qin M, Du G, Sun X. Biomimetic cell-derived nanocarriers for modulating immune responses. Biomater Sci. 2020;8(2):530–543. doi:10.1039/c9bm01444f
  • Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. doi:10.1186/s13045-021-01096-0
  • Wang J, Zhang L, Chi H, Wang S. An alternative choice of lidocaine-loaded liposomes: lidocaine-loaded lipid–polymer hybrid nanoparticles for local anesthetic therapy. Drug Deliv. 2016;23(4):1254–1260. doi:10.3109/10717544.2016.1141259
  • Babaie S, Taghvimi A, Hong JH, et al. Recent advances in pain management based on nanoparticle technologies. J Nanobiotechnology. 2022;20(1):290. doi:10.1186/s12951-022-01473-y
  • Turner-Lawrence DE, Kerns W. Intravenous fat emulsion: a potential novel antidote. J Med Toxicol. 2008;4(2):109–114. doi:10.1007/BF03160965
  • Ruetsch Y, Boni T, Borgeat A. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem. 2005;1(3):175–182. doi:10.2174/1568026013395335
  • Geddes IC. Chemical structure of local anaesthetics. Br J Anaesth. 1962;34(4):229–239. doi:10.1093/bja/34.4.229
  • Arthur GR. Pharmacokinetics of local anesthetics. Local Anesthetics. 1986;165–186. doi:10.2199/jjsca.6.44
  • Taylor A, McLeod G. Basic pharmacology of local anaesthetics. BJA Educ. 2020;20(2):34–41. doi:10.1016/j.bjae.2019.10.002
  • Weiniger CF, Golovanevski M, Sokolsky-Papkov M, Domb AJ. Review of prolonged local anesthetic action. Expert Opin Drug Deliv. 2010;7(6):737–752. doi:10.1517/17425241003767383
  • Eggleston ST, Lush LW. Understanding allergic reactions to local anesthetics. Ann Pharmacother. 1996;30(7–8):851–857. doi:10.1177/106002809603000724
  • Sobanko JF, Miller CJ, Alster TS. Topical anesthetics for dermatologic procedures: a review. Dermatol Surg. 2012;38(5):709–721. doi:10.1111/j.1524-4725.2011.02271.x
  • de Araújo DR, de Ribeiro LN, de Paula E. Lipid-based carriers for the delivery of local anesthetics. Expert Opin Drug Deliv. 2019;16(7):701–714. doi:10.1080/17425247.2019.1629415
  • Zhang LY, Li WY, Ji M, et al. Efficacy and safety of using premedication with simethicone/Pronase during upper gastrointestinal endoscopy examination with sedation: a single center, prospective, single blinded, randomized controlled trial. Dig Endosc. 2018;30(1):57–64. doi:10.1111/den.12952
  • Gur A, Tekin E. 10% Lidocaine spray as a local anesthetic in blood gas sampling: a randomized, double-blind, placebo-controlled study. Am J Emerg Med. 2021;49:89–93. doi:10.1016/j.ajem.2021.05.060
  • Ben-David B, Solomon E, Levin H, et al. Intrathecal fentanyl with small-dose dilute bupivacaine: better anesthesia without prolonging recovery. Anesth Analg. 1997;85(3):560–565. doi:10.1097/00000539-199709000-00014
  • Kuzma PJ, Kline MD, Calkins MD, Staats PS. Progress in the development of ultra-long-acting local anesthetics. Reg Anesth. 1997;22(6):543–551. PMID: 9425971.
  • Gazerani P, Cairns BE. Venom-based biotoxins as potential analgesics. Expert Rev Neurother. 2014;14(11):1261–1274. doi:10.1586/14737175.2014.962518
  • Makarova M, Rycek L, Hajicek J, et al. Tetrodotoxin: history, biology, and synthesis. Angew Chem Int Ed Engl. 2019;58(51):18338–18387. doi:10.1002/anie.201901564
  • Moldovan M, Alvarez S, Rothe C, et al. An in vivo mouse model to investigate the effect of local anesthetic nanomedicines on axonal conduction and excitability. Front Neurosci. 2018;12:494. doi:10.3389/fnins.2018.00494
  • Zhan C, Wang W, Santamaria C, et al. Ultrasensitive phototriggered local anesthesia. Nano Lett. 2017;17(2):660–665. doi:10.1021/acs.nanolett.6b03588
  • Lea-Banks H, O’Reilly MA, Hamani C, Hynynen K. Localized anesthesia of a specific brain region using ultrasound-responsive barbiturate nanodroplets. Theranostics. 2020;10(6):2849–2858. doi:10.7150/thno.41566
  • Liu X, Zhao Q. Long-term anesthetic analgesic effects: comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed Pharmacother. 2019;117:109057. doi:10.1016/j.biopha.2019.109057
  • Lalatsa A, Patel PV, Sun Y, et al. Transcutaneous anaesthetic nano-enabled hydrogels for eyelid surgery. Int J Pharm. 2020;577:119003. doi:10.1016/j.ijpharm.2019.119003
  • Weldon C, Ji T, Nguyen MT, et al. Nanoscale bupivacaine formulations to enhance the duration and safety of intravenous regional anesthesia. ACS Nano. 2019;13(1):18–25. doi:10.1021/acsnano.8b05408
  • Wang Y, Qin M, Hou J, Chen Y. In vitro and in vivo evaluation of a lidocaine loaded polymer nanoparticle formulation co-loaded with lidocaine for local anesthetics effect. Process Biochem. 2021;102:333–340. doi:10.1016/j.procbio.2021.01.010
  • Li A, Yang F, Xin J, Bai X. An efficient and long-acting local anesthetic: ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain. Int J Nanomedicine. 2019;14:913–920. doi:10.2147/IJN.S190164
  • Lalatsa A, Emeriewen K, Protopsalti V, et al. Developing transcutaneous nanoenabled anaesthetics for eyelid surgery. Br J Ophthalmol. 2016;100(6):871–876. doi:10.1136/bjophthalmol-2015-308250
  • Han H, Li S, Xu M, et al. Polymer- and lipid-based nanocarriers for ocular drug delivery: current status and future perspectives. Adv Drug Deliv Rev. 2023;196:114770. doi:10.1016/j.addr.2023.114770
  • Mishra V, Bansal KK, Verma A, et al. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):191. doi:10.3390/pharmaceutics10040191
  • Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano. 2021;15(11):16982–17015. doi:10.1021/acsnano.1c04996
  • Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Deliv Sci Technol. 2019;51:255–267. doi:10.1016/j.jddst.2019.02.017
  • Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. J Drug Deliv Sci Technol. 2020;56:101581. doi:10.1016/j.jddst.2020.101581
  • Zhan C, Wang W, McAlvin JB, et al. Phototriggered local anesthesia. Nano Lett. 2016;16(1):177–181. doi:10.1021/acs.nanolett.5b03440
  • Zhang W, Ji T, Li Y, et al. Light-triggered release of conventional local anesthetics from a macromolecular prodrug for on-demand local anesthesia. Nat Commun. 2020;11(1):2323. doi:10.1038/s41467-020-16177-w
  • Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci. 2018;112:159–167. doi:10.1016/j.ejps.2017.11.023
  • Zhang L, Wang J, Chi H, Wang S. Local anesthetic lidocaine delivery system: chitosan and hyaluronic acid-modified layer-by-layer lipid nanoparticles. Drug Deliv. 2016;23(9):3529–3537. doi:10.1080/10717544.2016.1204569
  • Ilfeld BM, Eisenach JC, Gabriel RA. Clinical effectiveness of liposomal bupivacaine administered by infiltration or peripheral nerve block to treat postoperative pain: a narrative review. Anesthesiology. 2021;134(2):283–344. doi:10.1097/ALN.0000000000003630
  • Zielinska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731. doi:10.3390/molecules25163731
  • Li K, Liu B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev. 2014;43(18):6570–6597. doi:10.1039/c4cs00014e
  • Zhao C, Liu A, Santamaria CM, et al. Polymer-tetrodotoxin conjugates to induce prolonged duration local anesthesia with minimal toxicity. Nat Commun. 2019;10(1):2566. doi:10.1038/s41467-019-10296-9
  • Mukherjee A, Waters AK, Kalyan P, et al. Lipid-polymer hybrid nanoparticles as a next generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomedicine. 2019;14:1937–1952. doi:10.2147/IJN.S198353
  • Lirk P, Picardi S, Hollmann MW. Local anaesthetics: 10 essentials. Eur J Anaesthesiol. 2014;31(11):575–585. doi:10.1097/EJA.0000000000000137
  • Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med. 2003;349(9):909–910. doi:10.1056/nejmra021261
  • Whalen FX, Bacon DR, Smith HM. Inhaled anesthetics: an historical overview. Best Pract Res Clin Anaesthesiol. 2005;19(3):323–330. doi:10.1016/j.bpa.2005.02.001
  • Ishizawa Y. General anesthetic gases and the global environment. Surv Anesthesiol. 2012;56(4):173. doi:10.1097/sa.0b013e31825c1ed3
  • Salehi B, Mohammadbeigi A, Kamali AR, et al. Impact comparison of ketamine and sodium thiopental on anesthesia during electroconvulsive therapy in major depression patients with drug-resistant; A double-blind randomized clinical trial. Ann Card Anaesth. 2015;18(4):486–490. doi:10.4103/0971-9784.166444
  • Colombo G, Lobina C, Agabio R, et al. Selective breeding of two rat lines differing in sensitivity to GHB and baclofen. Brain Res. 2001;902(1):127–130. doi:10.1016/S0006-8993(01)02389-7
  • Jakob SM, Ruokonen E, Grounds RM, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012;307(11):1151–1560. doi:10.1001/jama.2012.304
  • Zanos P, Moaddel R, Morris PJ, et al. Ketamine and ketamine metabolite pharmacology: insights into therapeutic mechanisms. Pharmacol Rev. 2018;70(3):621–660. doi:10.1124/pr.117.015198
  • Ebert TJ, Muzi M, Berens R, et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992;76(5):725–733. doi:10.1097/00000542-199205000-00010
  • Grunebaum MF, Galfalvy HC, Choo TH, et al. Ketamine for rapid reduction of suicidal thoughts in major depression: a midazolam-controlled randomized clinical trial. Am J Psychiatry. 2018;175(4):327–335. doi:10.1176/appi.ajp.2017.17060647
  • Kumar D, Rub MA. Effect of anionic surfactant and temperature on micellization behavior of promethazine hydrochloride drug in absence and presence of urea. J Mol Liq. 2017;238:389–396. doi:10.1016/j.molliq.2017.05.027
  • van den Boogaard M, Slooter AJC, Brüggemann RJM, et al. Effect of haloperidol on survival among critically ill adults with a high risk of delirium the REDUCE randomized clinical trial. JAMA. 2018;319(7):680–690. doi:10.1001/jama.2018.0160
  • Borgeat A, Fuchs T, Wilder-Smith O, Tassonyi E. The effect of nalbuphine and droperidol on spontaneous movements during induction of anesthesia with propofol in children. J Clin Anesth. 1993;5(1):12–15. doi:10.1016/0952-8180(93)90081-O
  • Wang Y, Ma L, Wang X, Qin L. Differential modulation of the auditory steady state response and inhibitory gating by chloral hydrate anesthesia. Sci Rep. 2018;8(1):3683. doi:10.1038/s41598-018-21920-x
  • Wigmore TJ, Mohammed K, Jhanji S. Long-term survival for patients undergoing volatile versus IV anesthesia for cancer surgery. Anesthesiology. 2016;124(1):69–79. doi:10.1097/01.sa.0000508187.35407.3f
  • Landoni G, Lomivorotov V, Nigro Neto C, et al. Volatile anesthetics versus total intravenous anesthesia for cardiac surgery. N Engl J Med. 2019;380(13):1214–1225. doi:10.1056/nejmoa1816476
  • Banks WA. Characteristics of compounds that cross the blood-brain barrier. BMC Neurol. 2009;9(Suppl 1):S3. doi:10.1186/1471-2377-9-S1-S3
  • Jiron JM, Calle JLM, Castillo EJ, et al. Comparison of isoflurane, ketamine-dexmedetomidine, and ketamine-xylazine for general anesthesia during oral procedures in rice rats (Oryzomys palustris). J Am Assoc Lab Anim Sci. 2019;58(1):40–49. doi:10.30802/AALAS-JAALAS-18-000032
  • Dutta S, Ebling WF, Matsumoto Y, et al. Steady-state propofol brain: plasma and brain: blood partition coefficients and the effect-site equilibration paradox. Br J Anaesth. 1998;81(3):422–424. doi:10.1093/bja/81.3.422
  • Mayer M, Doenicke A, Nebauer AE, Hepting L. Induction of anaesthesia with etomidate in lipid emulsion and propofol: haemodynamics and patient comfort. Anaesthesist. 1996;45:1082–1084. doi:10.1007/s001010050343
  • 360 Research Resports. Global general anesthesia drugs market insights and forecast to 2028; 2022. Available from: https://www.360researchreports.com/global-general-anesthesia-drugs-market-19925302. Accessed January 13, 2022.
  • Potoćnik I, Hostnik A, Božič JM. Do inhalational anesthetic agents still hold their place in modern anesthesia practice? Signa Vitae. 2019;15(2):14–17. doi:10.22514/SV152.092019.1
  • Liu H, Zhou X, Wang Y, et al. Mixed micelle as nanocarrier for etomidate: development, in vitro characterizations, and in vivo study on toxicity and anesthetic effects. J Drug Deliv Sci Technol. 2019;49:123–131. doi:10.1016/j.jddst.2018.10.038
  • Assani NAH, Azodi-Deilami S, Abdouss M, et al. Synthesis and evaluation of hydroponically alginate nanoparticles as novel carrier for intravenous delivery of propofol. J Mater Sci Mater Med. 2015;26(3):145. doi:10.1007/s10856-015-5452-0
  • Airan RD, Meyer RA, Ellens NPK, et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 2017;17(2):652–659. doi:10.1021/acs.nanolett.6b03517
  • Gao W, Liu Y, Jing G, et al. Rapid and efficient crossing blood-brain barrier: hydrophobic drug delivery system based on propionylated amylose helix nanoclusters. Biomaterials. 2017;113:133–144. doi:10.1016/j.biomaterials.2016.10.045
  • Liu J, Peng F, Kang Y, et al. High-loading self-assembling peptide nanoparticles as a lipid-free carrier for hydrophobic general anesthetics. Int J Nanomedicine. 2021;16:5317–5331. doi:10.2147/IJN.S315310
  • Han FY, Liu Y, Kumar V, et al. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int J Pharm. 2020;581:119291. doi:10.1016/j.ijpharm.2020.119291
  • Jee JP, Parlato MC, Perkins MG, et al. Exceptionally stable fluorous emulsions for the intravenous delivery of volatile general anesthetics. Anesthesiology. 2012;116(3):580–585. doi:10.1097/ALN.0b013e3182475d4d
  • Wu A, Wang Y, Min S, et al. Etomidate-loaded micelles for short-acting general anesthesia: preparation, characterizations, and in vivo studies. J Drug Deliv Sci Technol. 2018;46:156–161. doi:10.1016/j.jddst.2018.05.013
  • Geng D, Li Y, Wang C, et al. Optimization, and in vitro and in vivo evaluation of etomidate intravenous lipid emulsion. Drug Deliv. 2021;28(1):873–883. doi:10.1080/10717544.2021.1917729
  • Nyman Y, von Hofsten K, Palm C, et al. Etomidate-®Lipuro is associated with considerably less injection pain in children compared with propofol with added lidocaine. Br J Anaesth. 2006;97(4):536–539. doi:10.1093/bja/ael187
  • Macario A, Weinger M, Truong P, Lee M. Which clinical anesthesia outcomes are both common and important to avoid? The perspective of a panel of expert anesthesiologists. Anesth Analg. 1999;88(5):1085–1091. doi:10.1097/00000539-199905000-00023
  • Cicero M, Graneto J. Etomidate for procedural sedation in the elderly: a retrospective comparison between age groups. Am J Emerg Med. 2011;29(9):1111–1116. doi:10.1016/j.ajem.2010.08.004
  • Keleş GT, Kurutepe S, Tok D, et al. Comparison of antimicrobial effects of dexmedetomidine and etomidate-lipuro with those of propofol and midazolam. Eur J Anaesthesiol. 2006;23(12):1037–1040. doi:10.1017/S0265021506000949
  • Shi Y, Jiang Y, Cao J, et al. Boosting RNAi therapy for orthotopic glioblastoma with nontoxic brain-targeting chimaeric polymersomes. J Control Release. 2018;292:163–171. doi:10.1016/j.jconrel.2018.10.034
  • Wei Y, Sun Y, Wei J, et al. Selective transferrin coating as a facile strategy to fabricate BBB-permeable and targeted vesicles for potent RNAi therapy of brain metastatic breast cancer in vivo. J Control Release. 2021;337:521–529. doi:10.1016/j.jconrel.2021.07.048
  • Wei J, Wu D, Shao Y, et al. ApoE-mediated systemic nanodelivery of granzyme B and CpG for enhanced glioma immunotherapy. J Control Release. 2022;347:68–77. doi:10.1016/j.jconrel.2022.04.048
  • Hemmings HC, Akabas MH, Goldstein PA, et al. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci. 2005;26(10):503–510. doi:10.1016/j.tips.2005.08.006
  • Qiao R, Jia Q, Hüwel S, et al. Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano. 2012;6(4):3304–3310. doi:10.1021/nn300240p
  • Zhang S, Zhang S, Luo S, et al. Ultrasound-assisted brain delivery of nanomedicines for brain tumor therapy: advance and prospect. J Nanobiotechnology. 2022;20(1):287. doi:10.1186/s12951-022-01464-z
  • Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology. 2022;20(1):412. doi:10.1186/s12951-022-01610-7