978
Views
15
CrossRef citations to date
0
Altmetric
REVIEW

Progress in Pluronic F127 Derivatives for Application in Wound Healing and Repair

, , , , , , , , , , , & ORCID Icon show all
Pages 4485-4505 | Received 24 Apr 2023, Accepted 10 Jul 2023, Published online: 07 Aug 2023

References

  • Tang Q, Xue N, Ding X, et al. Role of wound microbiome, strategies of microbiota delivery system and clinical management. Adv Drug Deliv Rev. 2023;192:114671. doi:10.1016/j.addr.2022.114671
  • Markiewicz-Gospodarek A, Koziol M, Tobiasz M, et al. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int J Environ Res Public Health. 2022;19(3):1338. doi:10.3390/ijerph19031338
  • Stewart BT, Yankson IK, Afukaar F, et al. Road traffic and other unintentional injuries among travelers to developing countries. Med Clin North Am. 2016;100(2):331–343. doi:10.1016/j.mcna.2015.07.011
  • Doss ER, Popejoy LL. Informal family caregiving of patients with diabetic extremity wounds: an integrative review. West J Nurs Res. 2023;45(3):272–281. doi:10.1177/01939459221115694
  • Gao L, Liu X, Zhao W, et al. Extracellular-matrix-mimicked 3D nanofiber and hydrogel interpenetrated wound dressing with a dynamic autoimmune-derived healing regulation ability based on wound exudate. Biofabrication. 2022;15(1):015021. doi:10.1088/1758-5090/acaa01
  • Han C, Zhang X, Pang G, et al. Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs. Biomaterials. 2022;287:121619. doi:10.1016/j.biomaterials.2022.121619
  • Yang B, Liang C, Chen D, et al. A conductive supramolecular hydrogel creates ideal endogenous niches to promote spinal cord injury repair. Bioact Mater. 2022;15:103–119. doi:10.1016/j.bioactmat.2021.11.032
  • Tolabi H, Davari N, Khajehmohammadi M, et al. Progress of microfluidic hydrogel-based scaffolds and organ-on-chips for the cartilage tissue engineering. Adv Mater. 2023;35:e2208852. doi:10.1002/adma.202208852
  • Li Z, Li G, Xu J, et al. Hydrogel transformed from nanoparticles for prevention of tissue injury and treatment of inflammatory diseases. Adv Mater. 2022;34(16):e2109178. doi:10.1002/adma.202109178
  • Chen J, Chen L, Wu Y, et al. A H2O2-activatable nanoprobe for diagnosing interstitial cystitis and liver ischemia-reperfusion injury via multispectral optoacoustic tomography and NIR-II fluorescent imaging. Nat Commun. 2021;12(1):6870. doi:10.1038/s41467-021-27233-4
  • Zou S, He Q, Wang Q, et al. Injectable Nanosponge-loaded Pluronic F127 hydrogel for pore-forming toxin neutralization. Int J Nanomedicine. 2021;16:4239–4250. doi:10.2147/IJN.S315062
  • Pradines B, Djabourov M, Vauthier C, et al. Gelation and micellization behaviors of pluronic((R)) F127 hydrogel containing poly(isobutylcyanoacrylate) nanoparticles specifically designed for mucosal application. Colloids Surf B Biointerfaces. 2015;135:669–676. doi:10.1016/j.colsurfb.2015.08.021
  • Cao J, Su M, Hasan N, et al. Nitric oxide-releasing thermoresponsive Pluronic F127/Alginate hydrogel for enhanced antibacterial activity and accelerated healing of infected wounds. Pharmaceutics. 2020;12(10):926. doi:10.3390/pharmaceutics12100926
  • Dung TH, Huong LT, Yoo H. Morphological feature of Pluronic F127 and its application in burn treatment. J Nanosci Nanotechnol. 2018;18(2):829–832. doi:10.1166/jnn.2018.14880
  • Lee SY, Jeon SI, Sim SB, et al. A supramolecular host-guest interaction-mediated injectable hydrogel system with enhanced stability and sustained protein release. Acta Biomater. 2021;131:286–301. doi:10.1016/j.actbio.2021.07.004
  • Wang C, Wang M, Xia K, et al. A bioactive injectable self-healing anti-inflammatory hydrogel with ultralong extracellular vesicles release synergistically enhances motor functional recovery of spinal cord injury. Bioact Mater. 2021;6(8):2523–2534. doi:10.1016/j.bioactmat.2021.01.029
  • Chen Y, Khan AR, Yu D, et al. Pluronic F127-functionalized molybdenum oxide nanosheets with pH-dependent degradability for chemo-photothermal cancer therapy. J Colloid Interface Sci. 2019;553:567–580. doi:10.1016/j.jcis.2019.06.066
  • Zhou H, Qi Z, Pei P, et al. Biocompatible nanomicelles for sensitive detection and photodynamic therapy of early-stage cancer. Biomater Sci. 2021;9(18):6227–6235. doi:10.1039/D1BM00847A
  • Klouda L and Mikos AG. (2008). Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm, 68(1), 34–45. 10.1016/j.ejpb.2007.02.025
  • Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–945. doi:10.1126/science.1253836
  • Guo B, Dong R, Liang Y, et al. Haemostatic materials for wound healing applications. Nat Rev Chem. 2021;5(11):773–791. doi:10.1038/s41570-021-00323-z
  • Li Q, Wang D, Jiang Z, et al. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem. 2022;10:1038839. doi:10.3389/fchem.2022.1038839
  • Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials. 2018;183:185–199. doi:10.1016/j.biomaterials.2018.08.044
  • Zhang L, Zhang Y, Ma F, et al. A low-swelling and toughened adhesive hydrogel with anti-microbial and hemostatic capacities for wound healing. J Mater Chem B. 2022;10(6):915–926. doi:10.1039/D1TB01871J
  • Wang S, Zheng H, Zhou L, et al. Nanoenzyme-reinforced injectable hydrogel for healing diabetic wounds infected with multidrug resistant bacteria. Nano Lett. 2020;20(7):5149–5158. doi:10.1021/acs.nanolett.0c01371
  • Choi JS, Yoo HS. Pluronic/chitosan hydrogels containing epidermal growth factor with wound-adhesive and photo-crosslinkable properties. J Bimed Mater Res A. 2010;95A(2):564–573. doi:10.1002/jbm.a.32848
  • Latif A, Fisher LE, Dundas AA, et al. Microparticles decorated with cell-instructive surface chemistries actively promote wound healing. Adv Mater;2022. e2208364. doi:10.1002/adma.202208364
  • Roy R, Zayas J, Mohamed MF, et al. IL-10 dysregulation underlies chemokine insufficiency, delayed macrophage response, and impaired healing in diabetic wounds. J Invest Dermatol. 2022;142(3 Pt A):692–704.e14. doi:10.1016/j.jid.2021.08.428
  • Mofazzal JM, Sahandi ZP, Moosavi BS, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33–64. doi:10.1016/j.addr.2017.08.001
  • Schmolka IR. Artificial skin. I. Preparation and properties of pluronic F-127 gels for treatment of burns. J Biomed Mater Res. 1972;6(6):571–582. doi:10.1002/jbm.820060609
  • Nalbandian RM, Henry RL, Wilks HS. Artificial skin. II. Pluronic F-127 Silver nitrate or silver lactate gel in the treatment of thermal burns. J Bimed Mater Res. 1972;6(6):583. doi:10.1002/jbm.820060610
  • Wang S, Li J, Ma Z, et al. A sequential therapeutic hydrogel with injectability and antibacterial activity for deep burn wounds’ cleaning and healing. Front Bioeng Biotechnol. 2021;9:794769. doi:10.3389/fbioe.2021.794769
  • Li Z, Zhou F, Li Z, et al. Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Inter. 2018;10(30):25194–25202. doi:10.1021/acsami.8b08165
  • Alvarado-Gomez E, Martínez-Castañon G, Sanchez-Sanchez R, Ganem-Rondero A, Yacaman MJ, Martinez-Gutierrez F. Evaluation of anti-biofilm and cytotoxic effect of a gel formulation with Pluronic F-127 and silver nanoparticles as a potential treatment for skin wounds. Mat Sci Eng C-Bio S. 2018;92:621–630. doi:10.1016/j.msec.2018.07.023
  • Kant V, Gopal A, Kumar D, et al. Topical pluronic F-127 gel application enhances cutaneous wound healing in rats. Acta Histochem. 2014;116(1):5–13. doi:10.1016/j.acthis.2013.04.010
  • Muszanska AK, Busscher HJ, Herrmann A, van der Mei HC, Norde W. Pluronic-lysozyme conjugates as anti-adhesive and antibacterial bifunctional polymers for surface coating. Biomaterials. 2011;32(26):6333–6341. doi:10.1016/j.biomaterials.2011.05.016
  • Zhou D, Li S, Pei M, et al. Dopamine-modified hyaluronic acid hydrogel adhesives with fast-forming and high tissue adhesion. ACS Appl Mater Inter. 2020;12(16):18225–18234. doi:10.1021/acsami.9b22120
  • Liu G, Wang L, He Y, et al. Polydopamine nanosheets doped injectable hydrogel with nitric oxide release and photothermal effects for bacterial ablation and wound healing. Adv Healthc Mater. 2021;10(23):e2101476. doi:10.1002/adhm.202101476
  • Mei L, Zhang D, Shao H, et al. Injectable and self-healing probiotics-loaded hydrogel for promoting superbacteria-infected wound healing. ACS Appl Mater Inter. 2022;14(18):20538–20550. doi:10.1021/acsami.1c23713
  • Yang B, Song J, Jiang Y, et al. Injectable adhesive self-healing multicross-linked double-network hydrogel facilitates full-thickness skin wound healing. ACS Appl Mater Inter. 2020;12(52):57782–57797. doi:10.1021/acsami.0c18948
  • Li S, Pei M, Wan T, et al. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials. Carbohydr Polym. 2020;250:116922. doi:10.1016/j.carbpol.2020.116922
  • Wei Z, Zhao J, Chen YM, et al. Self-healing polysaccharide-based hydrogels as injectable carriers for neural stem cells. Sci Rep. 2016;6:37841. doi:10.1038/srep37841
  • Deng P, Chen F, Zhang H, et al. Multifunctional double-layer composite hydrogel conduit based on chitosan for peripheral nerve repairing. Adv Healthc Mater. 2022;11(13):e2200115. doi:10.1002/adhm.202200115
  • Gong X, Luo M, Wang M, et al. Injectable self-healing ceria-based nanocomposite hydrogel with ROS-scavenging activity for skin wound repair. Regen Biomater. 2022;9(1):rbab074. doi:10.1093/rb/rbab074
  • Hu Q, Xie N, Liao K, et al. An injectable thermosensitive Pluronic F127/hyaluronic acid hydrogel loaded with human umbilical cord mesenchymal stem cells and asiaticoside microspheres for uterine scar repair. Int J Biol Macromol. 2022;219:96–108. doi:10.1016/j.ijbiomac.2022.07.161
  • Engel AK, Yoden T, Sanui K, et al. Synthesis of aromatic Schiff base oligomers at the air/water interface. J Am Chem Soc. 1985;107(26):8308–8310. doi:10.1021/ja00312a108
  • Yu H, Liu Y, Yang H, et al. An injectable self-healing hydrogel based on chain-extended PEO-PPO-PEO multiblock copolymer. Macromol Rapid Commun. 2016;37(21):1723–1728. doi:10.1002/marc.201600323
  • Wang P, Deng G, Zhou L, et al. Ultrastretchable, self-healable hydrogels based on dynamic covalent bonding and triblock copolymer micellization. ACS Macro Lett. 2017;6(8):881–886. doi:10.1021/acsmacrolett.7b00519
  • Pathak K, Misra SK, Sehgal A, et al. Biomedical applications of quaternized chitosan. Polymers. 2021;13(15):2514. doi:10.3390/polym13152514
  • Zhang H, Qiu T, Bai Y, et al. Enhanced antibacterial activity of lysozyme loaded quaternary ammonium chitosan nanoparticles functionalized with cellulose nanocrystals. Int J Biol Macromol. 2021;191:71–78. doi:10.1016/j.ijbiomac.2021.09.027
  • Mi Y, Chen Y, Tan W, et al. The influence of bioactive glyoxylate bearing Schiff base on antifungal and antioxidant activities to chitosan quaternary ammonium salts. Carbohydr Polym. 2022;278:118970. doi:10.1016/j.carbpol.2021.118970
  • Liu W, Wang M, Cheng W, et al. Bioactive antiinflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis. Bioact Mater. 2021;6(3):721–728. doi:10.1016/j.bioactmat.2020.09.008
  • Serracanta J, Baena J, Martinez-Mendez JR, et al. Bromelain-based enzymatic burn debridement: Spanish multidisciplinary consensus. Eur J Plast Surg. 2022;2022:1–9.
  • Zhou L, Xi Y, Xue Y, et al. Injectable self-healing antibacterial bioactive polypeptide-based hybrid nanosystems for efficiently treating multidrug resistant infection, skin-tumor therapy, and enhancing wound healing. Adv Funct Mater. 2019;29(22):1806883. doi:10.1002/adfm.201806883
  • He Y, Liu K, Guo S, et al. Multifunctional hydrogel with reactive oxygen species scavenging and photothermal antibacterial activity accelerates infected diabetic wound healing. Acta Biomater. 2023;155:199–217. doi:10.1016/j.actbio.2022.11.023
  • Wu H, Li F, Wang S, et al. Ceria nanocrystals decorated mesoporous silica nanoparticle based ROS-scavenging tissue adhesive for highly efficient regenerative wound healing. Biomaterials. 2018;151:66–77. doi:10.1016/j.biomaterials.2017.10.018
  • Li Z, Liu L, Chen Y. Dual dynamically crosslinked thermosensitive hydrogel with self-fixing as a postoperative anti-adhesion barrier. Acta Biomater. 2020;110:119–128. doi:10.1016/j.actbio.2020.04.034
  • Cellesi F, Tirelli N, Hubbell JA. Materials for cell encapsulation via a new tandem approach combining reverse thermal gelation and covalent crosslinking. Macromol Chem Phys. 2002;203(10–11):1466–1472. doi:10.1002/1521-3935(200207)203:10/11<1466::AID-MACP1466>3.0.CO;2-P
  • Zheng Z, Eglin D, Alini M, et al. Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review. Engineering-Prc. 2021;7(7):966–978.
  • Ren P, Zhang H, Dai Z, et al. Stiff micelle-crosslinked hyaluronate hydrogels with low swelling for potential cartilage repair. J Mater Chem B. 2019;7(36):5490–5501. doi:10.1039/C9TB01155B
  • Shen C, Li Y, Meng Q. Adhesive polyethylene glycol-based hydrogel patch for tissue repair. Colloid Surface B. 2022;218:112751. doi:10.1016/j.colsurfb.2022.112751
  • Hiendlmeier L, Zurita F, Vogel J, et al. 4D printed soft and stretchable self-folding cuff electrodes for small-nerve interfacing. Adv Mater. 2023;35:e2210206. doi:10.1002/adma.202210206
  • Liu Y, Zhang Z, Zhang Y, et al. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury. Acta Biomater. 2022. doi:10.1016/j.actbio.2022.12.048
  • Zhang N, Wang Y, Zhang J, Guo J, He J. Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration. Acta Biomater. 2021;135:304–317. doi:10.1016/j.actbio.2021.08.029
  • Xu C, Chang Y, Xu Y, et al. Silicon-phosphorus-nanosheets-integrated 3D-printable hydrogel as a bioactive and biodegradable scaffold for vascularized bone regeneration. Adv Healthc Mater. 2022;11(6):e2101911. doi:10.1002/adhm.202101911
  • Du X, Wu L, Yan H, et al. Multifunctional hydrogel patch with toughness, tissue adhesiveness, and antibacterial activity for sutureless wound closure. ACS Biomater Sci Eng. 2019;5(5):2610–2620. doi:10.1021/acsbiomaterials.9b00130
  • Davidson EC. Tannic Acid in the Treatment of Burns. Surg Gynecol Obstet. 1928;545:351.
  • Du X, Hou Y, Wu L, et al. An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure. J Mater Chem B. 2020;8(26):5682–5693. doi:10.1039/D0TB00640H
  • Chatterjee S, Upadhyay P, Mishra M, et al. Advances in chemistry and composition of soft materials for drug releasing contact lenses. Rsc Adv. 2020;10(60):36751–36777. doi:10.1039/D0RA06681H
  • Wang L, Shen M, Hou Q, et al. 3D printing of reduced glutathione grafted gelatine methacrylate hydrogel scaffold promotes diabetic bone regeneration by activating PI3K/Akt signaling pathway. Int J Biol Macromol. 2022;222(Pt A):1175–1191. doi:10.1016/j.ijbiomac.2022.09.236
  • Zhao X, Guo B, Wu H, et al. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat Commun. 2018;9(1):2784. doi:10.1038/s41467-018-04998-9
  • Choi JS, Yoo HS. Chitosan/pluronic hydrogel containing bFGF/heparin for encapsulation of human dermal fibroblasts. J Biomater Sci Polym Ed. 2013;24(2):210–223. doi:10.1163/156856212X630267
  • Wu J, Xiao Z, Chen A, et al. Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration. Acta Biomater. 2018;71:293–305. doi:10.1016/j.actbio.2018.02.034
  • Zhao Z, Pan M, Qiao C, et al. Bionic engineered protein coating boosting anti-biofouling in complex biological fluids. Adv Mater. 2022;35:e2208824. doi:10.1002/adma.202208824
  • Ibrahim G, Isloor AM, Asiri AM, et al. Novel, one-step synthesis of zwitterionic polymer nanoparticles via distillation-precipitation polymerization and its application for dye removal membrane. Sci Rep. 2017;7(1):15889. doi:10.1038/s41598-017-16131-9
  • Fang K, Wang R, Zhang H, et al. Mechano-responsive, tough, and antibacterial zwitterionic hydrogels with controllable drug release for wound healing applications. ACS Appl Mater Inter. 2020;12(47):52307–52318. doi:10.1021/acsami.0c13009
  • Xu Z, Liu Y, Ma R, et al. Thermosensitive hydrogel incorporating Prussian blue nanoparticles promotes diabetic wound healing via ROS scavenging and mitochondrial function restoration. ACS Appl Mater Inter. 2022;14(12):14059–14071. doi:10.1021/acsami.1c24569
  • Xu S, Li S, Bjorklund M, et al. Mitochondrial fragmentation and ROS signaling in wound response and repair. Cell Regen. 2022;11(1):38. doi:10.1186/s13619-022-00141-8
  • Schiffmann LM, Werthenbach JP, Heintges-Kleinhofer F, et al. Mitochondrial respiration controls neoangiogenesis during wound healing and tumour growth. Nat Commun. 2020;11(1):3653. doi:10.1038/s41467-020-17472-2
  • Fu H, Zhou H, Yu X, et al. Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling. Nat Commun. 2020;11(1):1050. doi:10.1038/s41467-020-14885-x
  • Willenborg S, Sanin DE, Jais A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab. 2021;33(12):2398–2414.e9. doi:10.1016/j.cmet.2021.10.004
  • Jin P, Pan Q, Lin Y, et al. Platelets facilitate wound healing by mitochondrial transfer and reducing oxidative stress in endothelial cells. Oxid Med Cell Longev. 2023;2023:2345279. doi:10.1155/2023/2345279
  • Khalilov R. A COMPREHENSIVE REVIEW OF ADVANCED NANO-BIOMATERIALS IN REGENERATIVE MEDICINE AND DRUG DELIVERY. ABES. 2023;8(1):5–18.
  • Deng QS, Gao Y, Rui BY, et al. Double-network hydrogel enhanced by SS31-loaded mesoporous polydopamine nanoparticles: symphonic collaboration of near-infrared photothermal antibacterial effect and mitochondrial maintenance for full-thickness wound healing in diabetes mellitus. Bioact Mater. 2023;27:409–428. doi:10.1016/j.bioactmat.2023.04.004
  • Ding J, Gao B, Chen Z, et al. An NIR-triggered au nanocage used for photo-thermo therapy of chronic wound in diabetic rats through bacterial membrane destruction and skin cell mitochondrial protection. Front Pharmacol. 2021;12:779944. doi:10.3389/fphar.2021.779944
  • Wang W, Gao Y, Zhang M, et al. Neutrophil-like biomimic AIE nanoparticles with high-efficiency inflammatory cytokine targeting enable precise photothermal therapy and alleviation of inflammation. ACS Nano. 2023;17(8):7394–7405. doi:10.1021/acsnano.2c11762
  • Xiong Y, Lin Z, Bu P, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv Mater. 2023;35(19):e2212300. doi:10.1002/adma.202212300
  • Ahmadian E, Eftekhari A, Janas D, et al. Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: a perspective. Nanotheranostics. 2023;7(1):61–69. doi:10.7150/ntno.78611
  • Almoshari Y, Ren R, Zhang H, et al. GSK3 inhibitor-loaded osteotropic Pluronic hydrogel effectively mitigates periodontal tissue damage associated with experimental periodontitis. Biomaterials. 2020;261:120293. doi:10.1016/j.biomaterials.2020.120293
  • Al-Mahallawi AM, Abdelbary AA, El-Zahaby SA. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: in vitro and in vivo evaluation. Int J Pharm. 2021;600:120490. doi:10.1016/j.ijpharm.2021.120490
  • Zafar A, Imam SS, Yasir M, et al. Preparation of NLCs-based topical erythromycin gel: in vitro characterization and antibacterial assessment. Gels. 2022;8(2):116. doi:10.3390/gels8020116
  • Zhang J, Zhu S, Zhao M, et al. Analgesic and potentiated photothermal therapy with ropivacaine-loaded hydrogels. Theranostics. 2023;13(7):2226–2240. doi:10.7150/thno.81325
  • Enggi CK, Isa HT, Sulistiawati S, et al. Development of thermosensitive and mucoadhesive gels of cabotegravir for enhanced permeation and retention profiles in vaginal tissue: a proof of concept study. Int J Pharm. 2021;609:121182. doi:10.1016/j.ijpharm.2021.121182