367
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

How Combined Macrolide Nanomaterials are Effective Against Resistant Pathogens? A Comprehensive Review of the Literature

ORCID Icon, ORCID Icon &
Pages 5289-5307 | Received 27 May 2023, Accepted 23 Aug 2023, Published online: 15 Sep 2023

References

  • Imran M, Jha SK, Hasan N, et al. Overcoming multidrug resistance of antibiotics via nanodelivery systems. Pharmaceutics. 2022;14(3):1–25. doi:10.3390/pharmaceutics14030586
  • Fareed N, Nisa S, Bibi Y, et al. Green synthesized silver nanoparticles using carrot extract exhibited strong antibacterial activity against multidrug resistant bacteria. J King Saud Univ. 2023;35(2):102477. doi:10.1016/j.jksus.2022.102477
  • Valizadeh H, Mohammadi G, Ehyaei R, Milani M, Azhdarzadeh M, Lotfipour F. Antibacterial activity of clarithromycin loaded PLGA nanoparticles. Int J Pharm Sci. 2012;2012:63–68.
  • Abou DH, Abbas HS. Antimicrobial activity of biosynthesized Cuo / Se nanocomposite against Helicobacter pylori. Arab J Chem. 2023;16(9):105095. doi:10.1016/j.arabjc.2023.105095
  • Alavi M, Rai M. Expert review of anti-infective therapy recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug- resistant (MDR) bacteria. Expert Rev Anti Infect Ther. 2019;17(6):419–428. doi:10.1080/14787210.2019.1614914
  • Thu Dao TA, Webb HK, Malherbe F. Optimization of pectin extraction from fruit peels by response surface method: conventional versus microwave-assisted heating. Food Hydrocoll. 2021;113:106475. doi:10.1016/j.foodhyd.2020.106475
  • Cristea C, Tertis M, Galatus R. Magnetic nanoparticles for antibiotics detection. Nanomaterials. 2017;7(6):119. doi:10.3390/nano7060119
  • Wilson DN, Hauryliuk V, Atkinson GC, O’Neill AJ. Target protection as a key antibiotic resistance mechanism. Nat Rev Microbiol. 2020;18:637–648. doi:10.1038/s41579-020-0386-z
  • Abdulbaqi MR, Maraie NK, Dawood A Loading of clarithromycin and paclitaxel on synthesized CDS/NIO nanoparticles as promising nanocarriers nanoparticles as promising nanocarriers; 2016.
  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Altern Med. 2015;2015:1–16. doi:10.1155/2015/246012
  • Wan F, Jumaa H, Sternberg C, Rades T, Nielsen HM, Kłodzin SN. Utilizing nanoparticles for improving anti-biofilm effects of azithromycin: a head-to-head comparison of modified hyaluronic acid nanogels and coated poly (lactic- co -glycolic acid) nanoparticles. J Colloid Interface Sci. 2019;555:595–606. doi:10.1016/j.jcis.2019.08.006
  • Baquero F. Gram-positive resistance: challenge for the development of new antibiotics. J Antimicrob Chemother. 1997;39(SUPPL. A):1–6. doi:10.1093/jac/39.suppl_1.1
  • Das B, Patra S. Antimicrobials: meeting the challenges of antibiotic resistance through nanotechnology. In: Nanostructures for Antimicrobial Therapy: Nanostructures in Therapeutic Medicine Series. Elsevier Inc.; 2017:1–22.
  • Ergin A, Ercis S, Hasçelik G. Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures. J Antimicrob Chemother. 2006;2005:139–141. doi:10.1093/jac/dki404
  • Peche J. Macrolide resistance mechanisms in Gram-positive cocci. Int J Antimicrob Agents. 2001;18:1–4. doi:10.1016/S0924-8579(01)00396-X
  • Miklasi M. Mechanisms of resistance to macrolide antibiotics among Staphylococcus aureus. Antibiotics. 2021;2021:1.
  • Jubeh B, Breijyeh Z, Ismail A. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. 2020;26:1–22. doi:10.3390/molecules26010001
  • John JF, Harvin AM. History and evolution of antibiotic resistance in coagulase-negative staphylococci: susceptibility pro fi les of new anti-staphylococcal agents. Ther Clin Risk Manag. 2007;3(14):1143–1152.
  • Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci. 2018;43(9):668–684. doi:10.1016/j.tibs.2018.06.011
  • Ali I, Imran M, Saifullah S, Tian H, Guo D, Shah MR. Amphiphilic p-Sulfonatocalix[6]arene based self-assembled nanostructures for enhanced clarithromycin activity against resistant streptococcus pneumoniae. Colloids Surf B. 2019;186:110676. doi:10.1016/j.colsurfb.2019.110676
  • Gómez MA, Bonilla JM, Coronel MA, et al. Antibacterial activity against Staphylococcus aureus of chitosan/chondroitin sulfate nanocomplex aerogels alone and enriched with erythromycin and elephant garlic (Allium ampeloprasum L. var. ampeloprasum) extract. Pure Appl Chem. 2018;90(5):885–900. doi:10.1515/pac-2016-1112
  • Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007;24(2):203–227. doi:10.1007/s11095-006-9146-7
  • Golkar T, Zielinski M, Berghuis AM. Look and outlook on enzyme-mediated macrolide resistance. Front Microbiol. 2018;9:1–15. doi:10.3389/fmicb.2018.01942
  • Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A. Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules. 2016;21(7):1–30. doi:10.3390/molecules21070836
  • Zharkova MS, Orlov DS, Golubeva OY, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance? Front Cell Infect Microbiol. 2019;9(APR). doi:10.3389/fcimb.2019.00128
  • Lee H, Jung D, Yeom JS, et al. Evaluation of ceftriaxone utilization at multicenter study. Korean J Intern Med. 2009;24:374–380. doi:10.3904/kjim.2009.24.4.374
  • Koopaei MN, Maghazei MS, Mostafavi SH, et al. Enhanced antibacterial activity of roxithromycin loaded pegylated poly lactide-co-glycolide nanoparticles. J Pharm Sci. 2012;20(1):1–8.
  • Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: research progress, challenges, and prospects. World J Microbiol Biotechnol. 2021;37(6):1–30. doi:10.1007/s11274-021-03070-x
  • Baptista PV, McCusker MP, Carvalho A, Ferreira DA. Nano-strategies to fight multidrug resistant bacteria —“a battle of the titans”. Front Microbiol. 2018;9(July):1–26. doi:10.3389/fmicb.2018.01441
  • Jabri AT, Imran M, Rao K. Fabrication of lecithin-gum tragacanth muco-adhesive hybrid nano-carrier system for in-vivo performance of Amphotericin B. Carbohydr Polym. 2018;194. doi:10.1016/j.carbpol.2018.04.013
  • Aljihani SA, Alehaideb Z, Alarfaj RE, et al. Enhancing azithromycin antibacterial activity by encapsulation in liposomes/liposomal-N-acetylcysteine formulations against resistant clinical strains of Escherichia coli. Saudi J Biol Sci. 2020;27(11):3065–3071. doi:10.1016/j.sjbs.2020.09.012
  • Shunmugaperumal T, Kaur V. In vitro anti-inflammatory and antimicrobial activities of azithromycin after loaded in chitosan- and tween 20-based oil-in-water macroemulsion for acne management. AAPS Pharm Sci Tech. 2016;17(3):700–709. doi:10.1208/s12249-015-0401-2
  • Vignesh K, Rajarajan M, Suganthi A. Photocatalytic degradation of erythromycin under visible light by zinc phthalocyanine-modified titania nanoparticles. Mater Sci Semicond Process. 2014;23(1):98–103. doi:10.1016/j.mssp.2014.02.050
  • Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot. 2011;64(9):625–634.
  • Forna N, Damir D, Duceac LD, et al. Nano‐architectonics of antibiotic‐loaded polymer particles as vehicles for active molecules. Appl Sci. 2022;12(4):1998. doi:10.3390/app12041998
  • Periti P, Mazzei T, Mini E, Novelli A. Pharmacokinetic Drug Interactions of Macrolides. Clin Pharmacokinet. 1992;23(2):106–131. doi:10.2165/00003088-199223020-00004
  • More PR, Pandit S, Filippis A, Franci G, Mijakovic I, Galdiero M. Silver Nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 2023;11(2):1.
  • Walsh FM, Amyes SGB. Microbiology and drug resistance mechanisms of fully resistant pathogens. Curr Opin Microbiol. 2004;7(5):439–444. doi:10.1016/j.mib.2004.08.007
  • Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis. 2002;34:482–492. doi:10.1086/324626
  • Rams TE, Dujardin S, Sautter JD, Degener JE, van Winkelhoff AJ. Spiramycin resistance in human periodontitis microbiota. Anaerobe. 2011;17(4):201–205. doi:10.1016/j.anaerobe.2011.03.017
  • Bush K, Courvalin P, Dantas G, et al. Tackling antibiotic resistance. Nat Rev Microbiol. 2011;9(12):894–896. doi:10.1038/nrmicro2693
  • Miao MX, San QZ, Xin YW, Kun QF, Gu Y. Study on the characteristics of pectin-ketoprofen for colon targeting in rats. Int J Pharm. 2005;298(1):91–97. doi:10.1016/j.ijpharm.2005.04.012
  • Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis. 2014;2014:1–7. doi:10.1155/2014/541340
  • Gaynor M, Mankin AS. Macrolide antibiotics: binding site, mechanism of action. Resistance. 2005;2005:21–35.
  • Aruguete DM, Kim B, Hochella MF, et al. Antimicrobial nanotechnology: its potential for the effective management of microbial drug resistance and implications for research needs in microbial nanotoxicology. Environ Sci Process Impacts. 2013;15(1):93–102. doi:10.1039/C2EM30692A
  • Shipitsyna E, Rumyantseva T, Golparian D, et al. Prevalence of macrolide and fluoroquinolone resistance-mediating mutations in Mycoplasma genitalium in five cities in Russia and Estonia. PLoS One. 2017;12(4):1–11. doi:10.1371/journal.pone.0175763
  • Hetta HF, Ramadan YN, Al-Harbi AI. Nanotechnology as a promising approach to combat multidrug resistant bacteria: a comprehensive review and future perspectives. Biomedicines. 2023;11(2):1.
  • Čižman M. The use and resistance to antibiotics in the community. Int J Antimicrob Agents. 2003;21(4):297–307. doi:10.1016/S0924-8579(02)00394-1
  • Öztürk AA, Aygül A, Şenel B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): formulation, characterization, antibacterial activity and cytotoxicity. J Drug Deliv Sci Technol. 2019;54:101240. doi:10.1016/j.jddst.2019.101240
  • Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol. 2023;205(2):1–19. doi:10.1007/s00203-023-03404-3
  • Chakraborty N, Jha D, Roy I, et al. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnol. 2022;20(1):1–25. doi:10.1186/s12951-022-01573-9
  • Shibl AM. Patterns of macrolide resistance determinants among S. pyogenes and S. pneumoniae isolates in Saudi Arabia. J Int Med Res. 2005;33(3):349–355. doi:10.1177/147323000503300310
  • Ruddaraju LK, Pammi SVN, Guntuku G, Padavala VS, Kolapalli VRM. A review on anti-bacterials to combat resistance: from ancient era of plants and metals to present and future perspectives of green nano technological combinations. Asian J Pharm Sci. 2020;15(1):42–59. doi:10.1016/j.ajps.2019.03.002
  • Engberg J, Aarestrup FM, Taylor DE, Gerner-smidt P, Nachamkin I. Quinolone and macrolide resistance in campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg Infect Dis. 2001;7(1):24–34. doi:10.3201/eid0701.010104
  • Wang W, Ma X, Jiang P, et al. AC SC. Food Hydrocoll. 2016. doi:10.1016/j.foodhyd.2016.06.019
  • Jain S, Arora P, Popli H. A comprehensive review on Citrus aurantifolia essential oil: its phytochemistry and pharmacological aspects. Brazilian J Nat Sci. 2020;3(2):354. doi:10.31415/bjns.v3i2.101
  • Klugman KP, Lonks JR. Hidden Epidemic of Macrolide- resistant Pneumococci. Emerg Infect Dis. 2005;11(6):802–807. doi:10.3201/eid1106.050147
  • Zavadska D, Berziņa D, Drukaļska L, Pugačova Ņ, Miklaševičs E, Gardovska D. Macrolide resistance in group A beta haemolytic Streptococcus isolated from outpatient children in Latvia. Apmis. 2010;118(5):366–370. doi:10.1111/j.1600-0463.2010.02607.x
  • Singh R, Smitha MS, Singh SP. The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol. 2014;14(7):4745–4756. doi:10.1166/jnn.2014.9527
  • Ramteke S, Jain NK. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. J Drug Target. 2008;16(January):65–72. doi:10.1080/10611860701733278
  • Sanhai WR, Sakamoto JH, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3(May):2–4. doi:10.1038/nnano.2008.114
  • Imran M, Raza M, Ullah F, et al. Glycoside-based niosomal nanocarrier for enhanced in-vivo performance of Ce fi xime. Int J Pharm. 2016;505:122–132. doi:10.1016/j.ijpharm.2016.03.042
  • Mubeen B, Ansar AN, Rasool R, et al. Nanotechnology as a novel approach in combating microbes providing an alternative to antibiotics. Antibiotics. 2021;10(12). doi:10.3390/antibiotics10121473
  • Mi G, Shi D, Wang M, Webster TJ. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial Surfaces. Adv Healthc Mater. 2018;7(13):1–23. doi:10.1002/adhm.201800103
  • Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci. 2014;2014:1–34.
  • Zaidur M, Sabuj R. Nanoscale Advances Inhaled antibiotic-loaded polymeric nanoparticles for the management of lower respiratory tract. Nanoscale Adv. 2021;3:4005–4018. doi:10.1039/D1NA00205H
  • Wu S, Altenried S, Zogg A, Zuber F, Maniura-weber K, Ren Q. Role of the surface nanoscale roughness of stainless steel on bacterial adhesion and microcolony formation. ACS omega. 2018;3:6456–6464. doi:10.1021/acsomega.8b00769
  • Saddik MS, Elsayed MMA, El-Mokhtar MA, et al. Tailoring of novel azithromycin-loaded zinc oxide nanoparticles for wound healing. Pharmaceutics. 2022;14(1):111. doi:10.3390/pharmaceutics14010111
  • Schleh C, Semmler-behnke M, Lipka J, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012;2012:5390.
  • Mitchell MJ, Billingsley MM, Haley RM, Langer R, Wechsler ME, Peppas NA. Engineering precision nanoparticles. Nat Rev Drug Discov. 2021;20:101–124. doi:10.1038/s41573-020-0090-8
  • Joseph TM, Mahapatra DK, Esmaeili A, et al. Nanoparticles: taking a unique position in medicine. Nanomaterials. 2023;13:574. doi:10.3390/nano13030574
  • Vassallo A, Silletti MF, Faraone I, Milella L. Nanoparticulate antibiotic systems as antibacterial agents and antibiotic delivery platforms to fight infections. J Nanomater. 2020;2020:1–31. doi:10.1155/2020/6905631
  • Liu X, Li Z, Wang X, et al. Novel antimicrobial peptide—modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2016;11:6781–6794. doi:10.2147/IJN.S107107
  • Moritz M, Geszke-moritz M. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. J Chem Eng. 2013;228:596–613. doi:10.1016/j.cej.2013.05.046
  • Chatterjee M, Hens A, Mahato K, Jaiswal N. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique. J Colloid Interface Sci. 2017;506:126–134. doi:10.1016/j.jcis.2017.07.023
  • Schmitt V, Pätzold L, Abed N, et al. PLGA nanocapsules improve the delivery of clarithromycin to kill intracellular Staphylococcus aureus and Mycobacterium abscessus. Nanomedicine. 2019;24:102125. doi:10.1016/j.nano.2019.102125
  • Tewabe A, Marew T, Birhanu G. The contribution of nano-based strategies in overcoming ceftriaxone resistance: a literature review. Pharmacol Res Perspect. 2021;9(4):1–12. doi:10.1002/prp2.849
  • Yayehrad AT, Wondie GB, Marew T. Different nanotechnology approaches for ciprofloxacin delivery against multidrug-resistant microbes. Infect Drug Resist. 2022;15(January):413–426. doi:10.2147/IDR.S348643
  • Fozouni L, Javidmehr S, Barghamadi H, Mazandarani A, Rouhafza S. Antibacterial effect of zinc oxide nanoparticles on group A β-hemolytic Streptococci with macrolide resistance isolated from university student carriers in north of Iran. Int J Infect. 2019; 2019:1–7.
  • Gupta A, Mumtaz S, Li C, Hussain I, Rotello VM. Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev. 2019;48:415–427. doi:10.1039/C7CS00748E
  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–2702. doi:10.1039/C8RA08982E
  • Chowdhury A, Kunjiappan S, Panneerselvam T. Nanotechnology and nanocarrier-based approaches on treatment of degenerative diseases. Int Nano Lett. 2017;7(2):91–122.
  • Dobson J. Magnetic nanoparticles for drug delivery. Drug Dev Res. 2006;67(1):55–60. doi:10.1002/ddr.20067
  • Li P, Chen X, Shen Y, et al. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori bio fi lm. J Control Release. 2019;300(132):52–63. doi:10.1016/j.jconrel.2019.02.039
  • Masood F, Yasin T, Bukhari H, Mujahid M. Characterization and application of roxithromycin loaded cyclodextrin based nanoparticles for treatment of multidrug resistant bacteria. Mater Sci Eng C. 2016;61:1–7. doi:10.1016/j.msec.2015.11.076
  • Manimekalai P, Manavalan R. Selection of excipients for the formulation of Ceftriaxone sodium loaded chitosan Nanoparticle through drug - Excipient compatibility testing. Int J Res Pharm Sci. 2015;6(2):199–203.
  • Bhattacharyya S, Reddy P. Effect of surfactant on azithromycin dihydrate loaded stearic acid solid lipid nanoparticles. Turkish J Pharm Sci. 2019;16(4):425–431. doi:10.4274/tjps.galenos.2018.82160
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Trop J Pharm Res. 2013;12(April):255–264.
  • Angsantikul P, Thamphiwatana S, Zhang Q, et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against helicobacter pylori infection. Adv Ther. 2018;2018:1–9.
  • Alhajlan M, Alhariri M, Omri A. Efficacy and safety of liposomal clarithromycin and its effect on pseudomonas aeruginosa virulence factors. Antimicrob Agents Chemother. 2013;57(6):2694–2704. doi:10.1128/AAC.00235-13
  • Mohd S, Rizvi D, Selim A, et al. Antibiotic-loaded gold nanoparticles: a nano-arsenal against ESBL producer-resistant pathogens. Pharmaceutics. 2023;2023:1–20.
  • Abruzzo A, Parolin C, Rossi M, Vitali B, Cappadone C, Bigucci F. Development and characterization of azithromycin-loaded microemulsions: a promising tool for the treatment of bacterial skin infections. Antibiotics. 2022;11(8):1040. doi:10.3390/antibiotics11081040
  • Owais HM, Baddour MM, El-metwally HAE, Barakat HS, Ammar NS, Meheissen MA. Assessment of the in vitro activity of azithromycin niosomes alone and in combination with levofloxacin on extensively drug-resistant Klebsiella pneumoniae clinical isolates. Braz J Microbiol. 2021;52:597–606. doi:10.1007/s42770-021-00433-2
  • Gao Y, Wang J, Chai M, et al. Size and charge adaptive clustered nanoparticles targeting the bio fi lm microenvironment for chronic lung infection management. ACS nano. 2020;14:5686–5699. doi:10.1021/acsnano.0c00269
  • Bosnjakovic A, Mishra MK, Ren W, et al. Poly (amidoamine) dendrimer-erythromycin conjugates for drug delivery to macrophages involved in periprosthetic inflammation. Biol Med. 2011;7(3):284–294. doi:10.1016/j.nano.2010.10.008
  • Altun E, Aydogdu MO, Chung E, Ren G, Homer-Vanniasinkam S, Edirisinghe M. Metal-based nanoparticles for combating antibiotic resistance. Appl Phys Rev. 2021;8(4). doi:10.1063/5.0060299
  • Sharma A, Kumar Arya D, Dua M, Chhatwal GS, Johri AK. Nano-technology for targeted drug delivery to combat antibiotic resistance. Expert Opin Drug Deliv. 2012;9(11):1325–1332. doi:10.1517/17425247.2012.717927
  • Emmanuel R, Saravanan M, Ovais M, Padmavathy S, Shinwari ZK, Prakash P. Antimicrobial efficacy of drug blended biosynthesized colloidal gold nanoparticles from Justicia glauca against oral pathogens: a nanoantibiotic approach. Microb Pathog. 2017;113:295–302. doi:10.1016/j.micpath.2017.10.055
  • Mansouri F, Saffari M, Moniri R, Abbas Moosavi G, Molaghanbari M, Razavizade M Investigation of the effect of silver nanoparticles alone and their combination with clarithromycin on H. pylori isolates‏; 2022. Available from: https://www.researchsquare.com/article/rs-1631922/latest.pdf. Accessed September 7, 2023.
  • Yaqub A, Ali S, Allah Ditta S, Tanvir F, Ali S, Naz M. Enhanced bactericidal activity of Azithromycin-coated silver nanoprisms in comparison to their spherical-shaped counterparts. Micro Nano Lett. 2020;15:834–839. doi:10.1049/mnl.2019.0704
  • Liu JF, Issadore D HHS Public Access; 2020.
  • Darbasizadeh B, Fatahi Y, Feyzi-barnaji B, et al. Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int J Biol Macromol. 2019;141:1137–1146. doi:10.1016/j.ijbiomac.2019.09.060
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev. 2012;64:83–101. doi:10.1016/j.addr.2012.09.021
  • Vanić Ž, Rukavina Z, Manner S, et al. Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections Azithromycin-liposomes as a novel approach for localized therapy of cervicovaginal bacterial infections. Int J Nanomedicine. 2023;1:1.
  • Rukavina Z, Šegvić KM, Filipović-Grčić J, Lovrić J, Vanić Ž. Azithromycin-loaded liposomes for enhanced topical treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. Int J Pharm. 2018;553(1–2):109–119. doi:10.1016/j.ijpharm.2018.10.024
  • Bin-Jumah M, Gilani SJ, Jahangir MA, et al. Clarithromycin-loaded ocular chitosan nanoparticle: formulation, optimization, characterization, ocular irritation, and antimicrobial activity. Int J Nanomedicine. 2020;15:7861–7875. doi:10.2147/IJN.S269004
  • Ouyang J, Huang H, Chen X, Chen J. Biodegradable polymer/TiO2Nanotubes loaded roxithromycin as nanoarray capsules for long-lasting antibacterial properties of titanium implant. J Nanomater. 2020;2020:1–11. doi:10.1155/2020/5432926
  • Ashvini HM, Balla A, Mutta SK. Clarithromycin-loaded chitosan nanoparticles: preparation, characterisation and antibacterial activity on Streptococcus pneumonia. Indian J Pharm Sci. 2019;81(2):302–308. doi:10.36468/pharmaceutical-sciences.511
  • Le H, Karakasyan C, Jouenne T, Cerf D, Dé E. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance. Appl Sci. 2021;11(22):10695. doi:10.3390/app112210695
  • Al-ahmer SD, Shami AM, Al-saadi BQH. Using of hybrid nanoantibiotics antimicrobial agent as promising antimicrobial agent. Iraqi J Biotechnol. 2018;17(3):1–16.
  • Melville JL, Moal IH, Baker-Glenn C, Shaw PE, Pattenden G, Hirst JD. The structural determinants of macrolide-actin binding: in silico insights. Biophys J. 2007;92(11):3862–3867. doi:10.1529/biophysj.106.103580
  • Alt S, Wilkinson B. Biosynthesis of the novel macrolide antibiotic anthracimycin. ACS Chem Biol. 2015;10(11):2668–2679. doi:10.1021/acschembio.5b00525
  • Hadiya S, Reham A, Rehab M. Nanoparticles based combined antimicrobial drug. Bull Pharm Sci. 2022;45(2):1121–1141.
  • Abo-zeid Y, Amer A, Bakkar MR, El-Houssieny B, Sakran W. Antimicrobial activity of azithromycin encapsulated into PLGA NPs: a potential strategy to overcome efflux resistance. Antibiotics. 2022;11(11):1–20. doi:10.3390/antibiotics11111623
  • Tigabu B, Getachew A. Treatment of antibiotic-resistant bacteria by nanoparticles: current approaches and prospects. Ann Adv Chem. 2022;6(1):001–9. doi:10.29328/journal.aac.1001025
  • Azhdarzadeh M, Lotfipour F, Zakeri-milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram- positive bacteria. Adv Pharm Bull. 2012;2(1):17–24. doi:10.5681/apb.2012.003
  • Khalid UA, Afolabi BL. Nano-carriers based combating approach against antibiotic resistance: an insight into nanoparticles based peptide delivery. Int J Med Microbiol. 2023;1:1–23.