448
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Synergistic and Long-Lasting Wound Dressings Promote Multidrug-Resistant Staphylococcus Aureus-Infected Wound Healing

, , ORCID Icon, , , , , & show all
Pages 4663-4679 | Received 11 May 2023, Accepted 09 Aug 2023, Published online: 16 Aug 2023

References

  • Ouyang J, Bu QY, Tao N, et al. A facile and general method for synthesis of antibiotic-free protein-based hydrogel: wound dressing for the eradication of drug-resistant bacteria and biofilms. Bioact Mater. 2022:18446–18458. doi:10.1016/j.bioactmat.2022.03.033
  • Hassoun A, Linden PK, Friedman B, Sinderby C, Rozé H, Brochard L. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care. 2017;21:21. doi:10.1186/s13054-017-1801-3
  • Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336–343. doi:10.1038/nature17042
  • Sanabria-Rios DJ, Alequin-Torres D, De Jesus A, Cortes G, Carballeira NM. Vinyl halogenated fatty acids display antibacterial activity against clinical isolates of methicillin-resistant Staphylococcus aureus. Med Res Arch. 2022;10(7). doi:10.18103/mra.v10i7.2901
  • Yao G, Mo X, Yin C, et al. A programmable and skin temperature-activated electromechanical synergistic dressing for effective wound healing. Sci Adv. 2022;8(4):eabl8379. doi:10.1126/sciadv.abl8379
  • Zhao Q, Liu J, Liu SH, et al. Multipronged micelles-hydrogel for targeted and prolonged drug delivery in chronic wound infections. Acs Appl Mater Inter. 2022. doi:10.1021/acsami.2c12530
  • Simonetti O, Marasca S, Candelora M, et al. Methicillin-resistant staphylococcus aureus as a cause of chronic wound infections: alternative strategies for management. Aims Microbiol. 2022;8(2):125–137. doi:10.3934/microbiol.2022011
  • Ali Alghamdi B, Al-Johani I, Al-Shamrani JM, et al. Antimicrobial resistance in methicillin-resistant staphylococcus aureus. Saudi J Biol Sci. 2023;30(4):103604. doi:10.1016/j.sjbs.2023.103604
  • Nandhini P, Gupta PK, Mahapatra AK, et al. In-Silico molecular screening of natural compounds as a potential therapeutic inhibitor for methicillin-resistant staphylococcus aureus inhibition. Chem Biol Interact. 2023;374110383. doi:10.1016/j.cbi.2023.110383
  • Luneva O, Olekhnovich R, Uspenskaya M. Bilayer hydrogels for wound dressing and tissue engineering. Polymers. 2022;14(15):3135. doi:10.3390/polym14153135
  • Yao H, Wu M, Lin LW, et al. Design strategies for adhesive hydrogels with natural antibacterial agents as wound dressings: status and trends. Mater Today Bio. 2022;16. doi:10.1016/j.mtbio.2022.100429
  • Liu J, Jiang WQ, Xu QY, Zheng YJ. Progress in antibacterial hydrogel dressing. Gels-Basel. 2022;8(8). doi:10.3390/gels8080503
  • Solanki D, Vinchhi P, Patel MM. Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. Acs Omega. 2023;8(9):8172–8189. doi:10.1021/acsomega.2c06806
  • Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. doi:10.1038/s41392-021-00830-x
  • Khan MUA, Stojanovic GM, Hassan R, Anand TJS, Al-Ejji M, Hasan A. Role of graphene oxide in bacterial cellulose-gelatin hydrogels for wound dressing applications. Acs Omega. 2023;8(18):15909–15919. doi:10.1021/acsomega.2c07279
  • Long L, Liu W, Hu C, Yang L, Wang Y. Construction of multifunctional wound dressings with their application in chronic wound treatment. Biomater Sci. 2022;10(15):4058–4076. doi:10.1039/d2bm00620k
  • Zmejkoski DZ, Markovic ZM, Mitic DD, et al. Antibacterial composite hydrogels of graphene quantum dots and bacterial cellulose accelerate wound healing. J Biomed Mater Res B. 2022;110(8):1796–1805. doi:10.1002/jbm.b.35037
  • Shen Z, Zhang C, Wang T, Xu J. Advances in functional hydrogel wound dressings: a review. Polymers. 2023;15(9):2000. doi:10.3390/polym15092000
  • Li S, Dong S, Xu W, et al. Antibacterial Hydrogels. Adv Sci. 2018;5(5):1700527. doi:10.1002/advs.201700527
  • Yang K, Zhou XY, Li ZL, Wang ZF, Deng L, He DG. Ultrastretchable, self-healable, and tissue-adhesive hydrogel dressings involving nanoscale tannic acid/ferric ion complexes for combating bacterial infection and promoting wound healing. Acs Appl Mater Inter. 2022. doi:10.1021/acsami.2c13283
  • Wang Y, Lv T, Yin K, et al. Carbon dot-based hydrogels: preparations, properties, and applications. Small. 2023;19:e2207048. doi:10.1002/smll.202207048
  • Wan JF, Zhang XY, Fu K, Zhang X, Shang L, Su ZQ. Highly fluorescent carbon dots as novel theranostic agents for biomedical applications. Nanoscale. 2021;13(41):17236–17253. doi:10.1039/d1nr03740d
  • Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: a review. Sci Total Environ. 2022;810. doi:10.1016/j.scitotenv.2021.151997
  • Sadat Z, Farrokhi-Hajiabad F, Lalebeigi F, et al. A comprehensive review on the applications of carbon-based nanostructures in wound healing: from antibacterial aspects to cell growth stimulation. Biomater Sci. 2022;10:6911–6938. doi:10.1039/d2bm01308h
  • Zhao CF, Wang XW, Yu LY, et al. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria. Acta Biomater. 2022:138528–138544. doi:10.1016/j.actbio.2021.11.010
  • Wu YY, Li C, van der Mei HC, Busscher HJ, Ren YJ. Carbon quantum dots derived from different carbon sources for antibacterial applications. Antibiotics-Basel. 2021;10(6). doi:10.3390/antibiotics10060623
  • Zhao D, Zhang R, Liu XM, Huang XJ, Xiao XC, Yuan L. One-step synthesis of blue-green luminescent carbon dots by a low-temperature rapid method and their high-performance antibacterial effect and bacterial imaging. Nanotechnology. 2021;32(15):155101. doi:10.1088/1361-6528/abd8b0
  • Yue J, Miao P, Li L, Yan R, Dong WF, Mei Q. Injectable carbon dots-based hydrogel for combined photothermal therapy and photodynamic therapy of cancer. ACS Appl Mater Interfaces. 2022;14:49582–49591. doi:10.1021/acsami.2c15428
  • Campea MA, Majcher MJ, Lofts A, Hoare T. A review of design and fabrication methods for nanoparticle network hydrogels for biomedical, environmental, and industrial applications. Adv Funct Mater. 2021;31(33):2102355. doi:10.1002/adfm.202102355
  • Patel DK, Ganguly K, Jin HX, Dutta SD, Patil TV, Lim KT. Functionalized chitosan/spherical nanocellulose-based hydrogel with superior antibacterial efficiency for wound healing. Carbohyd Polym. 2022;284. doi:10.1016/j.carbpol.2022.119202
  • Stoica AE, Chircov C, Grumezescu AM. Nanomaterials for wound dressings: an up-to-date overview. Molecules. 2020;25(11):2699. doi:10.3390/molecules25112699
  • Kazeminava F, Javanbakht S, Nouri M, et al. Gentamicin-loaded chitosan/folic acid-based carbon quantum dots nanocomposite hydrogel films as potential antimicrobial wound dressing. J Biol Eng. 2022;16(1):36. doi:10.1186/s13036-022-00318-4
  • Moniruzzaman M, Dutta SD, Hexiu J, et al. Polyphenol derived bioactive carbon quantum dot-incorporated multifunctional hydrogels as an oxidative stress attenuator for antiaging and in vivo wound-healing applications. Biomater Sci. 2022;10(13):3527–3539. doi:10.1039/d2bm00424k
  • Cui F, Sun J, Ji J, Yang X. Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. J Hazard Mater. 2021;406124330. doi:10.1016/j.jhazmat.2020.124330
  • Wang Y, Chen J, Tian JK, et al. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma. J Nanobiotechnol. 2022;20(1). doi:10.1186/s12951-022-01275-2
  • Cui FC, Sun JD, Ji J, et al. Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. J Hazard Mater. 2021;406. doi:10.1016/j.jhazmat.2020.124330
  • Yang X, Li PL, Tang WT, et al. A facile injectable carbon dot/oxidative polysaccharide hydrogel with potent self-healing and high antibacterial activity. Carbohyd Polym. 2021;251. doi:10.1016/j.carbpol.2020.117040
  • Stenlund P, Enstedt L, Gilljam KM, et al. Development of an all-marine 3D printed bioactive hydrogel dressing for treatment of hard-to-heal wounds. Polymers. 2023;15(12):2627. doi:10.3390/polym15122627
  • Cao ZM, Luo Y, Li ZY, et al. Antibacterial Hybrid Hydrogels. Macromol Biosci. 2021;21(1):2000252. doi:10.1002/mabi.202000252
  • Trombino S, Sole R, Curcio F, Cassano R. Polymeric based hydrogel membranes for biomedical applications. Membranes. 2023;13(6). doi:10.3390/membranes13060576
  • Guo M, Wang Y, Gao B, He B. Shark tooth-inspired microneedle dressing for intelligent wound management. Acs Nano. 2021;15(9):15316–15327. doi:10.1021/acsnano.1c06279
  • Li Q, Zhang S, Du R, et al. Injectable self-healing adhesive natural glycyrrhizic acid bioactive hydrogel for bacteria-infected wound healing. ACS Appl Mater Interfaces. 2023;15(14):17562–17576. doi:10.1021/acsami.2c23231
  • Rohinishree YS, Negi PS. Effect of licorice extract on cell viability, biofilm formation and exotoxin production by Staphylococcus aureus. J Food Sci Tech Mys. 2016;53(2):1092–1100. doi:10.1007/s13197-015-2131-6
  • Zuo J, Meng T, Wang Y, Tang W. A review of the antiviral activities of glycyrrhizic acid, glycyrrhetinic acid and glycyrrhetinic acid monoglucuronide. Pharmaceutical. 2023;16(5):641. doi:10.3390/ph16050641
  • Zhao X, Zhang H, Gao YX, Lin Y, Hu J. A simple injectable moldable hydrogel assembled from natural glycyrrhizic acid with inherent antibacterial activity. Acs Appl Bio Mater. 2020;3(1):648–653. doi:10.1021/acsabm.9b01007
  • Qian Y, Zheng Y, Jin J, et al. Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv Mater. 2022;34(29):e2200521. doi:10.1002/adma.202200521
  • Selyutina OY, Polyakov NE. Glycyrrhizic acid as a multifunctional drug carrier - From physicochemical properties to biomedical applications: a modern insight on the ancient drug. Int J Pharm. 2019;559271–559279. doi:10.1016/j.ijpharm.2019.01.047
  • Cui L, Wang X, Liu Z, et al. Metal-organic framework decorated with glycyrrhetinic acid conjugated chitosan as a pH-responsive nanocarrier for targeted drug delivery. Int J Biol Macromol. 2023:240124370. doi:10.1016/j.ijbiomac.2023.124370
  • Wan Z, Sun Y, Ma L. Thermoresponsive structured emulsions based on the fibrillar self-assembly of natural saponin glycyrrhizic acid. Food Funct. 2017;8(1):75–85. doi:10.1039/c6fo01485b
  • Saha A, Adamcik J, Bolisetty S, Handschin S, Mezzenga R. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features. Angew Chem Int Ed Engl. 2015;54(18):5408–5412. doi:10.1002/anie.201411875
  • El-Sherbiny GM, Kalaba MH, Sharaf MH. Biogenic synthesis of CuO-NPs as nanotherapeutics approaches to overcome multidrug-resistant Staphylococcus aureus (MDRSA). Artif Cell Nanomed B. 2022;50(1):260–274. doi:10.1080/21691401.2022.2126492
  • Liu W, Li Z, Wang Z, et al. Functional system based on glycyrrhizic acid supramolecular hydrogel: toward polymorph control, stabilization, and controlled release. ACS Appl Mater Interfaces. 2023. doi:10.1021/acsami.2c19903
  • Fan Z, Cheng P, Chu L, Han J. Exploring the rheological and structural characteristics of novel pectin-salecan gels. Polymers. 2022;14(21):4619. doi:10.3390/polym14214619
  • Thambi T, Li Y, Lee DS. Injectable hydrogels for sustained release of therapeutic agents. J Control Release. 2017;26757–26766. doi:10.1016/j.jconrel.2017.08.006
  • Dong Q, Zu D, Kong L, et al. Construction of antibacterial nano-silver embedded bioactive hydrogel to repair infectious skin defects. Biomater Res. 2022;26(1):36. doi:10.1186/s40824-022-00281-7
  • Brown NM, Goodman AL, Horner C, Jenkins A, Brown EM. Treatment of methicillin-resistant Staphylococcus aureus (MRSA): updated guidelines from the UK. JAC Antimicrob Resist. 2021;3(1):dlaa114. doi:10.1093/jacamr/dlaa114
  • Lagies S, Pichler R, Vladimirov G, et al. Metabolic and lipidomic assessment of kidney cells exposed to nephrotoxic vancomycin dosages. Int J Mol Sci. 2021;22(18):10111. doi:10.3390/ijms221810111
  • Gao J, Hou H, Gao F. Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens. Eur J Med Chem. 2022;247115026. doi:10.1016/j.ejmech.2022.115026
  • Luo J, Wei W, Waldispuhl J, Moitessier N. Challenges and current status of computational methods for docking small molecules to nucleic acids. Eur J Med Chem. 2019;168414–168425. doi:10.1016/j.ejmech.2019.02.046
  • Wang YX, Malkmes MJ, Jiang C, et al. Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. J Hazard Mater. 2021;416:126236. doi:10.1016/j.jhazmat.2021.126236
  • Ahmad A, Majaz S, Nouroz F. Two-component systems regulate ABC transporters in antimicrobial peptide production, immunity and resistance. Microbiology. 2020;166(1):4–20. doi:10.1099/mic.0.000823
  • Mohammed EAH, Peng Y, Wang Z, Qiang X, Zhao Q. Synthesis, antiviral, and antibacterial activity of the glycyrrhizic acid and glycyrrhetinic acid derivatives. Russ J Bioorg Chem. 2022;48(5):906–918. doi:10.1134/S1068162022050132
  • Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira M. Liquorice (Glycyrrhiza glabra): a phytochemical and pharmacological review. Phytother Res. 2018;32(12):2323–2339. doi:10.1002/ptr.6178
  • Li Q, He Q, Xu M, et al. Food-grade emulsions and emulsion gels prepared by soy protein-pectin complex nanoparticles and glycyrrhizic acid nanofibrils. J Agric Food Chem. 2020;68(4):1051–1063. doi:10.1021/acs.jafc.9b04957
  • Cai DS, Yang YQ, Lu JH, et al. Injectable carrier-free hydrogel dressing with anti-multidrug- resistant staphylococcus aureus and anti-inflammatory capabilities for accelerated wound healing. Acs Appl Mater Inter. 2022. doi:10.1021/acsami.2c15463