526
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Nanomaterials Modulating the Fate of Dental-Derived Mesenchymal Stem Cells Involved in Oral Tissue Reconstruction: A Systematic Review

ORCID Icon, , , ORCID Icon, , , & show all
Pages 5377-5406 | Received 27 Apr 2023, Accepted 03 Sep 2023, Published online: 21 Sep 2023

References

  • Zhang Q, Wu W, Qian C, et al. Advanced biomaterials for repairing and reconstruction of mandibular defects. Mater Sci Eng C Mater Biol Appl. 2019;103:109858. doi:10.1016/j.msec.2019.109858
  • Zhao Z, Tao Y, Xiang X, Liang Z, Zhao Y. Identification and Validation of a Novel Model: predicting Short-Term Complications After Local Flap Surgery for Skin Tumor Removal. Med Sci Monit. 2022;28:e938002. doi:10.12659/MSM.938002
  • Liu P, Zhang Y, Ma Y, et al. Application of dental pulp stem cells in oral maxillofacial tissue engineering. Int J Med Sci. 2022;19(2):310–320. doi:10.7150/ijms.68494
  • Liu Y, Sun X, Yu J, et al. Platelet-Rich Fibrin as a Bone Graft Material in Oral and Maxillofacial Bone Regeneration: classification and Summary for Better Application. Biomed Res Int. 2019;2019:3295756. doi:10.1155/2019/3295756
  • Pei Z, Lei H, Cheng L. Bioactive inorganic nanomaterials for cancer theranostics. Chem Soc Rev. 2023;352. doi:10.1039/d2cs00352j
  • Bramhill J, Ross S, Ross G. Bioactive Nanocomposites for Tissue Repair and Regeneration: a Review. Int J Environ Res Public Health. 2017;14(1):66. doi:10.3390/ijerph14010066
  • Masne N, Ambade R, Bhugaonkar K. Use of Nanocomposites in Bone Regeneration. Cureus. 2022;14(11):e31346. doi:10.7759/cureus.31346
  • Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and Macroscale Scaffolds with Controlled-Release Polymeric Systems for Dental Craniomaxillofacial Tissue Engineering. Materials. 2018;11(8):1478. doi:10.3390/ma11081478
  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–13630. doi:10.1073/pnas.240309797
  • Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–5812. doi:10.1073/pnas.0937635100
  • Seo BM, Miura M, Gronthos S, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–155. doi:10.1016/S0140-6736(04)16627-0
  • Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, Huang GT. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34(2):166–171. doi:10.1016/j.joen.2007.11.021
  • Lin X, Li Q, Hu L, Jiang C, Wang S, Wu X. Apical Papilla Regulates Dental Follicle Fate via the OGN-Hh Pathway. J Dent Res. 2022;14:220345221138517. doi:10.1177/00220345221138517
  • Kim BC, Bae H, Kwon IK, et al. Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 2012;18(3):235–244. doi:10.1089/ten.TEB.2011.0642
  • Zhang C, Zhang Y, Feng Z, et al. Therapeutic effect of dental pulp stem cell transplantation on a rat model of radioactivity-induced esophageal injury. Cell Death Dis. 2018;9(7):738. doi:10.1038/s41419-018-0753-0
  • Raza SS, Wagner AP, Hussain YS, Khan MA. Mechanisms underlying dental-derived stem cell-mediated neurorestoration in neurodegenerative disorders. Stem Cell Res Ther. 2018;9(1):245. doi:10.1186/s13287-018-1005-z
  • Yamada Y, Nakamura-Yamada S, Kusano K, Baba S. Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: a Concise Review. Int J Mol Sci. 2019;20(5):1132. doi:10.3390/ijms20051132
  • Hata M, Omi M, Kobayashi Y, et al. Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther. 2015;6(1):162. doi:10.1186/s13287-015-0156-4
  • Papaccio G, Graziano A, d’Aquino R, et al. Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol. 2006;208(2):319–325. doi:10.1002/jcp.20667
  • Liang C, Liang Q, Xu X, et al. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci. 2022;14(1):38. doi:10.1038/s41368-022-00188-y
  • Zhang Z, Oh M, Sasaki JI, Nör JE. Inverse and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic differentiation of dental pulp stem cells. Cell Death Dis. 2021;12(7):644. doi:10.1038/s41419-021-03925-z
  • Wang J, Liu X, Jin X, et al. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater. 2010;6(10):3856–3863. doi:10.1016/j.actbio.2010.04.009
  • Zheng C, Chen J, Liu S, Jin Y. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci. 2019;11(3):23. doi:10.1038/s41368-019-0060-3
  • Zhang X, Li H, Sun J, et al. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration. Cell Prolif. 2017;50(5):e12361. doi:10.1111/cpr.12361
  • Ma W, Zhan Y, Zhang Y, Mao C, Xie X, Lin Y. The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther. 2021;6(1):351. doi:10.1038/s41392-021-00727-9
  • Liang K, Wang S, Tao S, et al. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019;11(2):15. doi:10.1038/s41368-019-0048-z
  • Kuang R, Zhang Z, Jin X, et al. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016;33:225–234. doi:10.1016/j.actbio.2016.01.032
  • Tahriri M, Del Monico M, Moghanian A, et al. Graphene and its derivatives: opportunities and challenges in dentistry. Mater Sci Eng C Mater Biol Appl. 2019;102:171–185. doi:10.1016/j.msec.2019.04.051
  • Bachhuka A, Delalat B, Ghaemi SR, Gronthos S, Voelcker NH, Vasilev K. Nanotopography mediated osteogenic differentiation of human dental pulp derived stem cells. Nanoscale. 2017;9(37):14248–14258. doi:10.1039/c7nr03131a
  • Yang Y, Zhang H, Komasa S, et al. Immunomodulatory Properties and Osteogenic Activity of Polyetheretherketone Coated with Titanate Nanonetwork Structures. Int J Mol Sci. 2022;23(2):612. doi:10.3390/ijms23020612
  • Ayadilord M, Nasseri S, Emadian Razavi F, Saharkhiz M, Rostami Z, Naseri M. Immunomodulatory effects of phytosomal curcumin on related-micro RNAs, CD200 expression and inflammatory pathways in dental pulp stem cells. Cell Biochem Funct. 2021;39(7):886–895. doi:10.1002/cbf.3659
  • Yin IX, Zhao IS, Mei ML, Li Q, Yu OY, Chu CH. Use of Silver Nanomaterials for Caries Prevention: a Concise Review. Int J Nanomedicine. 2020;15:3181–3191. doi:10.2147/IJN.S253833
  • Santos VE, Vasconcelos Filho A, Targino AG, et al. A new “silver-bullet” to treat caries in children--nano silver fluoride: a randomised clinical trial. J Dent. 2014;42(8):945–951. doi:10.1016/j.jdent.2014.05.017
  • Angel Villegas N, Silvero Compagnucci MJ, Sainz Ajá M, et al. Novel Antibacterial Resin-Based Filling Material Containing Nanoparticles for the Potential One-Step Treatment of Caries. J Healthc Eng. 2019;2019:6367919. doi:10.1155/2019/6367919
  • Ioannidis K, Niazi S, Mylonas P, Mannocci F, Deb S. The synthesis of nano silver-graphene oxide system and its efficacy against endodontic biofilms using a novel tooth model. Dent Mater. 2019;35(11):1614–1629. doi:10.1016/j.dental.2019.08.105
  • Razumova S, Brago A, Serebrov D, et al. The Application of Nano Silver Argitos as a Final Root Canal Irrigation for the Treatment of Pulpitis and Apical Periodontitis. In Vitro Study. Nanomaterials. 2022;12(2):248. doi:10.3390/nano12020248
  • Liu C, Hao Z, Yang T, Wang F, Sun F, Teng W. Anti-Acid Biomimetic Dentine Remineralization Using Inorganic Silica Stabilized Nanoparticles Distributed Electronspun Nanofibrous Mats. Int J Nanomedicine. 2021;16:8251–8264. doi:10.2147/IJN.S331321
  • Totu EE, Isildak I, Nechifor AC, Cristache CM, Enachescu M. New sensor based on membranes with magnetic nano-inclusions for early diagnosis in periodontal disease. Biosens Bioelectron. 2018;102:336–344. doi:10.1016/j.bios.2017.11.003
  • Zhang Y, Gulati K, Li Z, Di P, Liu Y. Dental Implant Nano-Engineering: advances, Limitations and Future Directions. Nanomaterials. 2021;11(10):2489. doi:10.3390/nano11102489
  • Chalisserry EP, Nam SY, Park SH, Anil S. Therapeutic potential of dental stem cells. J Tissue Eng. 2017;8. doi:10.1177/2041731417702531
  • Zhang W, Vazquez B, Oreadi D, Yelick PC. Decellularized Tooth Bud Scaffolds for Tooth Regeneration. J Dent Res. 2017;96(5):516–523. doi:10.1177/0022034516689082
  • Hu L, Gao Z, Xu J, et al. Decellularized Swine Dental Pulp as a Bioscaffold for Pulp Regeneration. Biomed Res Int. 2017;2017:9342714. doi:10.1155/2017/9342714
  • Xiong H, Zhao F, Peng Y, Li M, Qiu H, Chen K. Easily attainable and low immunogenic stem cells from exfoliated deciduous teeth enhanced the in vivo bone regeneration ability of gelatin/bioactive glass microsphere composite scaffolds. Front Bioeng Biotechnol. 2022;10:1049626. doi:10.3389/fbioe.2022.1049626
  • Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA. Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold. BMC Oral Health. 2021;21(1):263. doi:10.1186/s12903-021-01621-0
  • Zhang Y, Wang P, Wang Y, et al. Gold Nanoparticles Promote the Bone Regeneration of Periodontal Ligament Stem Cell Sheets Through Activation of Autophagy. Int J Nanomedicine. 2021;16:61–73. doi:10.2147/IJN.S282246
  • Mohebichamkhorami F, Fattahi R, Niknam Z, et al. Periodontal ligament stem cells as a promising therapeutic target for neural damage. Stem Cell Res Ther. 2022;13(1):273. doi:10.1186/s13287-022-02942-9
  • Kwack KH, Ji JY, Park B, Heo JS. Fucoidan (Undaria pinnatifida)/Polydopamine Composite-Modified Surface Promotes Osteogenic Potential of Periodontal Ligament Stem Cells. Mar Drugs. 2022;20(3):181. doi:10.3390/md20030181
  • Cui Y, Xie J, Fu Y, et al. Berberine mediates root remodeling in an immature tooth with apical periodontitis by regulating stem cells from apical papilla differentiation. Int J Oral Sci. 2020;12(1):18. doi:10.1038/s41368-020-0085-7
  • Liu J, Zou T, Zhang Y, et al. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla. Biomater Adv. 2022;138:212868. doi:10.1016/j.bioadv.2022.212868
  • Bok JS, Byun SH, Park BW, et al. The Role of Human Umbilical Vein Endothelial Cells in Osteogenic Differentiation of Dental Follicle-Derived Stem Cells in In Vitro Co-cultures. Int J Med Sci. 2018;15(11):1160–1170. doi:10.7150/ijms.27318
  • Aurrekoetxea M, Garcia-Gallastegui P, Irastorza I, et al. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Front Physiol. 2015;6:289. doi:10.3389/fphys.2015.00289
  • Ranganathan K, Lakshminarayanan V. Stem cells of the dental pulp. Indian J Dent Res. 2012;23:558.
  • Tsutsui TW. Dental Pulp Stem Cells: advances to Applications. Stem Cells Cloning. 2020;13:33–42. doi:10.2147/SCCAA.S166759
  • Ogata K, Moriyama M, Matsumura-Kawashima M, Kawado T, Yano A, Nakamura S. The Therapeutic Potential of Secreted Factors from Dental Pulp Stem Cells for Various Diseases. Biomedicines. 2022;10(5):1049. doi:10.3390/biomedicines10051049
  • Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý J. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs. 2011;193(6):344–365. doi:10.1159/000321160
  • Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci. 2013;54(12):7544–7556. doi:10.1167/iovs.13-13045
  • Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–5812. doi:10.1073/pnas.0937635100
  • Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications. Stem Cells Transl Med. 2020;9(4):445–464. doi:10.1002/sctm.19-0398
  • Zainuri M, Purba J, Wa Jusman S, Bachtiar EW. Conditioned-medium of stem cells from human exfoliated deciduous teeth prevent apoptosis of neural progenitors. Saudi Dent J. 2022;34(7):565–571. doi:10.1016/j.sdentj.2022.08.005
  • Pereira LV, Bento RF, Cruz DB, et al. Stem Cells from Human Exfoliated Deciduous Teeth (SHED) Differentiate in vivo and Promote Facial Nerve Regeneration. Cell Transplant. 2019;28(1):55–64. doi:10.1177/0963689718809090
  • Naz S, Khan FR, Khan I, et al. Comparative analysis of dental pulp stem cells and stem cells from human exfoliated teeth in terms of growth kinetics, immunophenotype, self-renewal and multi lineage differentiation potential for future perspective of calcified tissue regeneration. Pak J Med Sci. 2022;38(5):1228–1237. doi:10.12669/pjms.38.5.5187
  • Kunimatsu R, Nakajima K, Awada T, et al. Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun. 2018;501(1):193–198. doi:10.1016/j.bbrc.2018.04.213
  • Yang Z, Wang C, Zhang X, et al. Stem cells from human exfoliated deciduous teeth attenuate trigeminal neuralgia in rats by inhibiting endoplasmic reticulum stress. Korean J Pain. 2022;35(4):383–390. doi:10.3344/kjp.2022.35.4.383
  • Bai X, Zhang X, Wang C, et al. Stem Cells from Human Exfoliated Deciduous Teeth Attenuate Trigeminal Neuralgia in Rats. Stem Cells Int. 2021;2021:8819884. doi:10.1155/2021/8819884
  • Arora V, Arora P, Munshi AK. Banking stem cells from human exfoliated deciduous teeth (SHED): saving for the future. J Clin Pediatr Dent. 2009;33(4):289–294. doi:10.17796/jcpd.33.4.y887672r0j703654
  • Zhao Y, Shi Y, Yang H, et al. Stem cell microencapsulation maintains stemness in inflammatory microenvironment. Int J Oral Sci. 2022;14(1):48. doi:10.1038/s41368-022-00198-w
  • Li X, Zhao Y, Peng H, et al. Robust intervention for oxidative stress-induced injury in periodontitis via controllably released nanoparticles that regulate the ROS-PINK1-Parkin pathway. Front Bioeng Biotechnol. 2022;10:1081977. doi:10.3389/fbioe.2022.1081977
  • Liu T, Hu W, Zou X, et al. Human Periodontal Ligament Stem Cell-Derived Exosomes Promote Bone Regeneration by Altering MicroRNA Profiles. Stem Cells Int. 2020;2020:8852307. doi:10.1155/2020/8852307
  • Liu M, Chen R, Xu Y, Zheng J, Wang M, Wang P. Exosomal miR-141-3p from PDLSCs Alleviates High Glucose-Induced Senescence of PDLSCs by Activating the KEAP1-NRF2 Signaling Pathway. Stem Cells Int. 2023;2023:7136819. doi:10.1155/2023/7136819
  • Gao H, Li B, Zhao L, Jin Y. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int J Nanomedicine. 2015;10:4009–4027. doi:10.2147/IJN.S83357
  • Liang Y, Shakya A, Liu X. Biomimetic Tubular Matrix Induces Periodontal Ligament Principal Fiber Formation and Inhibits Osteogenic Differentiation of Periodontal Ligament Stem Cells. ACS Appl Mater Interfaces. 2022;14(32):36451–36461. doi:10.1021/acsami.2c09420
  • Jia L, Li D, Wang YN, Zhang D, Xu X. PSAT1 positively regulates the osteogenic lineage differentiation of periodontal ligament stem cells through the ATF4/PSAT1/Akt/GSK3β/β-catenin axis. J Transl Med. 2023;21(1):70. doi:10.1186/s12967-022-03775-z
  • Huang GT, Yamaza T, Shea LD, et al. Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A. 2010;16(2):605–615. doi:10.1089/ten.TEA.2009.0518
  • Bakopoulou A, Leyhausen G, Volk J, et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56(7):709–721. doi:10.1016/j.archoralbio.2010.12.008
  • Han C, Yang Z, Zhou W, et al. Periapical follicle stem cell: a promising candidate for cementum/periodontal ligament regeneration and bio-root engineering. Stem Cells Dev. 2010;19(9):1405–1415. doi:10.1089/scd.2009.0277
  • Liu J, Zou T, Yao Q, Zhang Y, Zhao Y, Zhang C. Hypoxia-mimicking cobalt-doped multi-walled carbon nanotube nanocomposites enhance the angiogenic capacity of stem cells from apical papilla. Mater Sci Eng C Mater Biol Appl. 2021;120:111797. doi:10.1016/j.msec.2020.111797
  • Wu X, Hu L, Li Y, et al. SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine. Int J Med Sci. 2018;15(4):291–299. doi:10.7150/ijms.22495
  • Hilkens P, Bronckaers A, Ratajczak J, Gervois P, Wolfs E, Lambrichts I. The Angiogenic Potential of DPSCs and SCAPs in an In Vivo Model of Dental Pulp Regeneration. Stem Cells Int. 2017;2017:2582080. doi:10.1155/2017/2582080
  • Rezai-Rad M, Bova JF, Orooji M, et al. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects. Cytotherapy. 2015;17(11):1572–1581. doi:10.1016/j.jcyt.2015.07.013
  • Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. J Biomater Appl. 2019;33(8):1128–1144. doi:10.1177/0885328218822641
  • Alipour M, Firouzi N, Aghazadeh Z, et al. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021;21(1):6. doi:10.1186/s12896-020-00666-3
  • Ansari S, Diniz IM, Chen C, et al. Human Periodontal Ligament- and Gingiva-derived Mesenchymal Stem Cells Promote Nerve Regeneration When Encapsulated in Alginate/Hyaluronic Acid 3D Scaffold. Adv Healthc Mater. 2017;6(24). doi:10.1002/adhm.201700670
  • Baskar K, Saravana Karthikeyan B, Gurucharan I, et al. Eggshell derived nano-hydroxyapatite incorporated carboxymethyl chitosan scaffold for dentine regeneration: a laboratory investigation. Int Endod J. 2022;55(1):89–102. doi:10.1111/iej.13644
  • Gurucharan I, Saravana Karthikeyan B, Mahalaxmi S, et al. Characterization of nano-hydroxyapatite incorporated carboxymethyl chitosan composite on human dental pulp stem cells. Int Endod J. 2022. doi:10.1111/iej.13885
  • Navidi G, Allahvirdinesbat M, Al-Molki SMM, et al. Design and fabrication of M-SAPO-34/chitosan scaffolds and evaluation of their effects on dental tissue engineering. Int J Biol Macromol. 2021;187:281–295. doi:10.1016/j.ijbiomac.2021.07.104
  • Su WT, Wu PS, Ko CS, Huang TY. Osteogenic differentiation and mineralization of human exfoliated deciduous teeth stem cells on modified chitosan scaffold. Mater Sci Eng C Mater Biol Appl. 2014;41:152–160. doi:10.1016/j.msec.2014.04.048
  • Hanafy AK, Shinaishin SF, Eldeen GN, Aly RM. Nano Hydroxyapatite & Mineral Trioxide Aggregate Efficiently Promote Odontogenic Differentiation of Dental Pulp Stem Cells. Open Access Maced J Med Sci. 2018;6(9):1727–1731. doi:10.3889/oamjms.2018.368
  • Sancilio S, Gallorini M, Di Nisio C, et al. Alginate/Hydroxyapatite-Based Nanocomposite Scaffolds for Bone Tissue Engineering Improve Dental Pulp Biomineralization and Differentiation. Stem Cells Int. 2018;2018:9643721. doi:10.1155/2018/9643721
  • Moonesi Rad R, Atila D, Evis Z, Keskin D, Tezcaner A. Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration. J Tissue Eng Regen Med. 2019;13(8):1331–1345. doi:10.1002/term.2877
  • El-Fiqi A, Mandakhbayar N, Jo SB, Knowles JC, Lee JH, Kim HW. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity. Bioact Mater. 2020;6(1):123–136. doi:10.1016/j.bioactmat.2020.07.010
  • Ahn JH, Kim IR, Kim Y, et al. The Effect of Mesoporous Bioactive Glass Nanoparticles/Graphene Oxide Composites on the Differentiation and Mineralization of Human Dental Pulp Stem Cells. Nanomaterials. 2020;10(4):620. doi:10.3390/nano10040620
  • Khoroushi M, Foroughi MR, Karbasi S, Hashemibeni B, Khademi AA. Effect of Polyhydroxybutyrate/Chitosan/Bioglass nanofiber scaffold on proliferation and differentiation of stem cells from human exfoliated deciduous teeth into odontoblast-like cells. Mater Sci Eng C Mater Biol Appl. 2018;89:128–139. doi:10.1016/j.msec.2018.03.028
  • Hosseini FS, Enderami SE, Hadian A, et al. Efficient osteogenic differentiation of the dental pulp stem cells on β-glycerophosphate loaded polycaprolactone/polyethylene oxide blend nanofibers. J Cell Physiol. 2019;234(8):13951–13958. doi:10.1002/jcp.28078
  • Ma L, Yu Y, Liu H, et al. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep. 2021;11(1):1027. doi:10.1038/s41598-020-79734-9
  • Alipour M, Aghazadeh M, Akbarzadeh A, Vafajoo Z, Aghazadeh Z, Raeisdasteh Hokmabad V. Towards osteogenic differentiation of human dental pulp stem cells on PCL-PEG-PCL/zeolite nanofibrous scaffolds. Artif Cells Nanomed Biotechnol. 2019;47(1):3431–3437. doi:10.1080/21691401.2019.1652627
  • Azaryan E, Hanafi-Bojd MY, Alemzadeh E, Emadian Razavi F, Naseri M. Effect of PCL/nHAEA nanocomposite to osteo/odontogenic differentiation of dental pulp stem cells. BMC Oral Health. 2022;22(1):505. doi:10.1186/s12903-022-02527-1
  • Prabha RD, Kraft DCE, Harkness L, et al. Bioactive nano-fibrous scaffold for vascularized craniofacial bone regeneration. J Tissue Eng Regen Med. 2018;12(3):e1537–e1548. doi:10.1002/term.2579
  • Su WT, Wu PS, Huang TY. Osteogenic differentiation of stem cells from human exfoliated deciduous teeth on poly(ε-caprolactone) nanofibers containing strontium phosphate. Mater Sci Eng C Mater Biol Appl. 2015;46:427–434. doi:10.1016/j.msec.2014.10.076
  • Zhou M, Liu NX, Shi SR, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. Nanomedicine. 2018;14(4):1227–1236. doi:10.1016/j.nano.2018.02.004
  • Zhou M, Liu N, Zhang Q, et al. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif. 2019;52(3):e12566. doi:10.1111/cpr.12566
  • Zhou M, Gao S, Zhang X, et al. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact Mater. 2020;6(6):1676–1688. doi:10.1016/j.bioactmat.2020.11.018
  • Wang Y, Song W, Cui Y, Zhang Y, Mei S, Wang Q. Calcium-siRNA Nanocomplexes Optimized by Bovine Serum Albumin Coating Can Achieve Convenient and Efficient siRNA Delivery for Periodontitis Therapy. Int J Nanomedicine. 2020;15:9241–9253. doi:10.2147/IJN.S278103
  • Zhang C, Yan B, Cui Z, et al. Bone regeneration in minipigs by intrafibrillarly-mineralized collagen loaded with autologous periodontal ligament stem cells. Sci Rep. 2017;7(1):10519. doi:10.1038/s41598-017-11155-7
  • Liu Y, Li N, Qi YP, et al. Intrafibrillar collagen mineralization produced by biomimetic hierarchical nanoapatite assembly. Adv Mater. 2011;23(8):975–980. doi:10.1002/adma.201003882
  • Chen WY, Li X, Feng Y, Lin S, Peng L, Huang D. M-keratin nano-materials create a mineralized micro-circumstance to promote proliferation and differentiation of DPSCs. J Mater Sci Mater Med. 2020;31(12):124. doi:10.1007/s10856-020-06465-8
  • Radunovic M, De Colli M, De Marco P, et al. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence. J Biomed Mater Res A. 2017;105(8):2312–2320. doi:10.1002/jbm.a.36085
  • Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome Cues Modulate the Neurogenic Potential of Bone Marrow and Dental Stem Cells. Mol Neurobiol. 2017;54(6):4672–4682. doi:10.1007/s12035-016-0011-3
  • Kumar A, Kumar V, Rattan V, Jha V, Bhattacharyya S. Secretome proteins regulate comparative osteogenic and adipogenic potential in bone marrow and dental stem cells. Biochimie. 2018;155:129–139. doi:10.1016/j.biochi.2018.10.014
  • Xia K, Chen Z, Chen J, et al. RGD- and VEGF-Mimetic Peptide Epitope-Functionalized Self-Assembling Peptide Hydrogels Promote Dentin-Pulp Complex Regeneration. Int J Nanomedicine. 2020;15:6631–6647. doi:10.2147/IJN.S253576
  • Nagy K, Láng O, Láng J, et al. A novel hydrogel scaffold for periodontal ligament stem cells. Interv Med Appl Sci. 2018;10(3):162–170. doi:10.1556/1646.10.2018.21
  • Jo BS, Lee Y, Suh JS, et al. A novel calcium-accumulating peptide/gelatin in situ forming hydrogel for enhanced bone regeneration. J Biomed Mater Res A. 2018;106(2):531–542. doi:10.1002/jbm.a.36257
  • Ruiz ON, Fernando KA, Wang B, et al. Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano. 2011;5(10):8100–8107. doi:10.1021/nn202699t
  • Di Carlo R, Zara S, Ventrella A, et al. Covalent Decoration of Cortical Membranes with Graphene Oxide as a Substrate for Dental Pulp Stem Cells. Nanomaterials. 2019;9(4):604. doi:10.3390/nano9040604
  • Simonovic J, Toljic B, Lazarevic M, et al. The Effect of Liquid-Phase Exfoliated Graphene Film on Neurodifferentiation of Stem Cells from Apical Papilla. Nanomaterials. 2022;12(18):3116. doi:10.3390/nano12183116
  • Simonovic J, Toljic B, Nikolic N, et al. Differentiation of stem cells from apical papilla into neural lineage using graphene dispersion and single walled carbon nanotubes. J Biomed Mater Res A. 2018;106(10):2653–2661. doi:10.1002/jbm.a.36461
  • Li Z, Qiu J, Du LQ, Jia L, Liu H, Ge S. TiO2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells. Mater Sci Eng C Mater Biol Appl. 2017;76:684–691. doi:10.1016/j.msec.2017.03.148
  • Thanasrisuebwong P, Jones JR, Eiamboonsert S, Ruangsawasdi N, Jirajariyavej B, Naruphontjirakul P. Zinc-Containing Sol-Gel Glass Nanoparticles to Deliver Therapeutic Ions. Nanomaterials. 2022;12(10):1691. doi:10.3390/nano12101691
  • Lapidot S, Meirovitch S, Sharon S, Heyman A, Kaplan DL, Shoseyov O. Clues for biomimetics from natural composite materials. Nanomedicine. 2012;7(9):1409–1423. doi:10.2217/nnm.12.107
  • Torres FG, Troncoso OP, Pisani A, Gatto F, Bardi G. Natural Polysaccharide Nanomaterials: an Overview of Their Immunological Properties. Int J Mol Sci. 2019;20(20):5092. doi:10.3390/ijms20205092
  • Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. Current Advances in Chitosan Nanoparticles Based Oral Drug Delivery for Colorectal Cancer Treatment. Int J Nanomedicine. 2022;17:3933–3966. doi:10.2147/IJN.S375229
  • Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33(11):3279–3305. doi:10.1016/j.biomaterials.2012.01.007
  • Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4):042001. doi:10.1088/1758-5090/ab331e
  • Shapiro L, Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials. 1997;18(8):583–590. doi:10.1016/s0142-9612(96)00181-0
  • Sancilio S, Marsich E, Schweikl H, Cataldi A, Gallorini M. Redox Control of IL-6-Mediated Dental Pulp Stem-Cell Differentiation on Alginate/Hydroxyapatite Biocomposites for Bone Ingrowth. Nanomaterials. 2019;9(12):1656. doi:10.3390/nano9121656
  • Hussein H, Kishen A. Engineered Chitosan-based Nanoparticles Modulate Macrophage-Periodontal Ligament Fibroblast Interactions in Biofilm-mediated Inflammation. J Endod. 2021;47(9):1435–1444. doi:10.1016/j.joen.2021.06.017
  • Wang Z, Shen Y, Haapasalo M. Antimicrobial and Antibiofilm Properties of Bioceramic Materials in Endodontics. Materials. 2021;14(24):7594. doi:10.3390/ma14247594
  • Sanz JL, Rodríguez-Lozano FJ, Llena C, Sauro S, Forner L. Bioactivity of Bioceramic Materials Used in the Dentin-Pulp Complex Therapy: a Systematic Review. Materials. 2019;12(7):1015. doi:10.3390/ma12071015
  • Rajula MPB, Narayanan V, Venkatasubbu GD, Mani RC, Sujana A. Nano-hydroxyapatite: a Driving Force for Bone Tissue Engineering. J Pharm Bioallied Sci. 2021;13(Suppl 1):S11–S14. doi:10.4103/jpbs.JPBS_683_20
  • Molino G, Palmieri MC, Montalbano G, Fiorilli S, Vitale-Brovarone C. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review. Biomed Mater. 2020;15(2):022001. doi:10.1088/1748-605X/ab5f1a
  • Mo X, Zhang D, Liu K, Zhao X, Li X, Wang W. Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering. Int J Mol Sci. 2023;24(2):1291. doi:10.3390/ijms24021291
  • Turco G, Marsich E, Bellomo F, et al. Alginate/Hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules. 2009;10:1575–1583. doi:10.1021/bm900154b
  • Brauer DS. Bioactive glasses—structure and properties. Angew Chem Int Ed Engl. 2015;54(14):4160–4181. doi:10.1002/anie.201405310
  • Choi Y, Sun W, Kim Y, et al. Effects of Zn-Doped Mesoporous Bioactive Glass Nanoparticles in Etch-and-Rinse Adhesive on the Microtensile Bond Strength. Nanomaterials. 2020;10(10):1943. doi:10.3390/nano10101943
  • Mamidi N, García RG, Martínez JDH, et al. Recent Advances in Designing Fibrous Biomaterials for the Domain of Biomedical, Clinical, and Environmental Applications. ACS Biomater Sci Eng. 2022;8(9):3690–3716. doi:10.1021/acsbiomaterials.2c00786
  • Coudane J, Nottelet B, Mouton J, Garric X, Van Den Berghe H. Poly(ε-caprolactone)-Based Graft Copolymers: synthesis Methods and Applications in the Biomedical Field: a Review. Molecules. 2022;27(21):7339. doi:10.3390/molecules27217339
  • Wesełucha-Birczyńska A, Kołodziej A, Świętek M, et al. Early Recognition of the PCL/Fibrous Carbon Nanocomposites Interaction with Osteoblast-like Cells by Raman Spectroscopy. Nanomaterials. 2021;11(11):2890. doi:10.3390/nano11112890
  • Qian Y, Song J, Zhao X, et al. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. Adv Sci. 2018;5(4):1700499. doi:10.1002/advs.201700499
  • Lin Y, Zhang L, Liu NQ, et al. In vitro behavior of tendon stem/progenitor cells on bioactive electrospun nanofiber membranes for tendon-bone tissue engineering applications. Int J Nanomedicine. 2019;14:5831–5848. doi:10.2147/IJN.S210509
  • Mantecón-Oria M, Diban N, Berciano MT, et al. Hollow Fiber Membranes of PCL and PCL/Graphene as Scaffolds with Potential to Develop In Vitro Blood-Brain Barrier Models. Membranes. 2020;10(8):161. doi:10.3390/membranes10080161
  • Thomas V, Jagani S, Johnson K, et al. Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol. 2006;6:487–493. doi:10.1166/jnn.2006.097
  • Wang W, Dang M, Zhang Z, et al. Dentin regeneration by stem cells of apical papilla on injectable nanofibrous microspheres and stimulated by controlled BMP-2 release. Acta Biomater. 2016;36:63–72. doi:10.1016/j.actbio.2016.03.015
  • Bharadwaz A, Jayasuriya AC. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2020;110:110698. doi:10.1016/j.msec.2020.110698
  • Gagner JE, Kim W, Chaikof EL. Designing protein-based biomaterials for medical applications. Acta Biomater. 2014;10(4):1542–1557. doi:10.1016/j.actbio.2013.10.001
  • Shao X, Lin S, Peng Q, et al. Tetrahedral DNA Nanostructure: a Potential Promoter for Cartilage Tissue Regeneration via Regulating Chondrocyte Phenotype and Proliferation. Small. 2017;13(12). doi:10.1002/smll.201602770
  • Li Q, Zhao D, Shao X, et al. Aptamer-Modified Tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery. ACS Appl Mater Interfaces. 2017;9(42):36695–36701. doi:10.1021/acsami.7b13328
  • Zhang Q, Lin S, Shi S, et al. Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS Appl Mater Interfaces. 2018;10(4):3421–3430. doi:10.1021/acsami.7b17928
  • Ma W, Xie X, Shao X, et al. Tetrahedral DNA nanostructures facilitate neural stem cell migration via activating RHOA/ROCK2 signalling pathway. Cell Prolif. 2018;51(6):e12503. doi:10.1111/cpr.12503
  • Ma W, Shao X, Zhao D, et al. Self-Assembled Tetrahedral DNA Nanostructures Promote Neural Stem Cell Proliferation and Neuronal Differentiation. ACS Appl Mater Interfaces. 2018;10(9):7892–7900. doi:10.1021/acsami.8b00833
  • Dou Y, Cui W, Yang X, Lin Y, Ma X, Cai X. Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration. Burns Trauma. 2022;10:tkac006. doi:10.1093/burnst/tkac006
  • Xia Z, Villa MM, Wei M. A Biomimetic Collagen-Apatite Scaffold with a Multi-Level Lamellar Structure for Bone Tissue Engineering. J Mater Chem B. 2014;2(14):1998–2007. doi:10.1039/C3TB21595D
  • Hu C, Zilm M, Wei M. Fabrication of intrafibrillar and extrafibrillar mineralized collagen/apatite scaffolds with a hierarchical structure. J Biomed Mater Res A. 2016;104(5):1153–1161. doi:10.1002/jbm.a.35649
  • Saska S, Teixeira LN, de Castro Raucci LMS, et al. Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol. 2017;103:467–476. doi:10.1016/j.ijbiomac.2017.05.086
  • Nelson WG, Sun TT. The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol. 1983;97(1):244–251. doi:10.1083/jcb.97.1.244
  • Kirfel J, Magin TM, Reichelt J. Keratins: a structural scaffold with emerging functions. Cell Mol Life Sci. 2003;60(1):56–71. doi:10.1007/s000180300004
  • Rubert Pérez CM, Stephanopoulos N, Sur S, Lee SS, Newcomb C, Stupp SI. The powerful functions of peptide-based bioactive matrices for regenerative medicine. Ann Biomed Eng. 2015;43(3):501–514. doi:10.1007/s10439-014-1166-6
  • Wang Y, Sun H. Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics. 2021;13(12):2108. doi:10.3390/pharmaceutics13122108
  • Panwar N, Soehartono AM, Chan KK, et al. Nanocarbons for Biology and Medicine: sensing, Imaging, and Drug Delivery. Chem Rev. 2019;119(16):9559–9656. doi:10.1021/acs.chemrev.9b00099
  • Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30(6):315–322. doi:10.1016/j.tibtech.2012.02.005
  • Thangamuthu M, Hsieh KY, Kumar PV, Chen GY. Graphene- and Graphene Oxide-Based Nanocomposite Platforms for Electrochemical Biosensing Applications. Int J Mol Sci. 2019;20(12):2975. doi:10.3390/ijms20122975
  • Bellet P, Gasparotto M, Pressi S, et al. Graphene-Based Scaffolds for Regenerative Medicine. Nanomaterials. 2021;11(2):404. doi:10.3390/nano11020404
  • Han S, Sun J, He S, Tang M, Chai R. The application of graphene-based biomaterials in biomedicine. Am J Transl Res. 2019;11(6):3246–3260.
  • Nayak TR, Andersen H, Makam VS, et al. Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano. 2011;5(6):4670–4678. doi:10.1021/nn200500h
  • Zhao W, Zhang S, Yang Q, Jiang D. Research Progress of Graphene and Derivatives Nanocomposite in Orthopedics Application. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2016;33(3):604–608.
  • Lee WC, Lim CHYX, Shi H, et al. Origin of Enhanced Stem Cell Growth andDifferentiation on Graphene and Graphene Oxide. ACS Nano. 2011;5(9):7334–7341.
  • Zhang L, Feng KC, Yu Y, et al. Effect of Graphene on Differentiation and Mineralization of Dental Pulp Stem Cells in Poly(4-vinylpyridine) Matrix in Vitro. ACS Appl Bio Mater. 2019;2(6):2435–2443. doi:10.1021/acsabm.9b00127
  • Halim A, Luo Q, Ju Y, Song G. A Mini Review Focused on the Recent Applications of Graphene Oxide in Stem Cell Growth and Differentiation. Nanomaterials. 2018;8(9):736. doi:10.3390/nano8090736
  • Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. Nanomaterials. 2021;11(11):3020. doi:10.3390/nano11113020
  • Guazzo R, Gardin C, Bellin G, et al. Graphene-Based Nanomaterials for Tissue Engineering in the Dental Field. Nanomaterials. 2018;8(5):349. doi:10.3390/nano8050349
  • Shende P, Patel D. Potential of Tribological Properties of Metal Nanomaterials in Biomedical Applications. Adv Exp Med Biol. 2020;1237:121–134. doi:10.1007/5584_2019_440
  • Fu Y, Ui S C, Luo D, Liu Y. Novel Inorganic Nanomaterial-Based Therapy for Bone Tissue Regeneration. Nanomaterials. 2021;11(3):789. doi:10.3390/nano11030789
  • Sakthi Devi R, Girigoswami A, Siddharth M, Girigoswami K. Applications of Gold and Silver Nanoparticles in Theranostics. Appl Biochem Biotechnol. 2022;194(9):4187–4219. doi:10.1007/s12010-022-03963-z
  • Xia Q, Huang J, Feng Q, et al. Size- and cell type-dependent cellular uptake, cytotoxicity and in vivo distribution of gold nanoparticles. Int J Nanomedicine. 2019;14:6957–6970. doi:10.2147/IJN.S214008
  • Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep. 2021;26:100991. doi:10.1016/j.bbrep.2021.100991
  • Yi C, Liu D. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano. 2010;4(11):6439–6448. doi:10.1021/nn101373r
  • Liu HC, Wang DS, Su F, et al. Reconstruction of alveolar bone defects using bone morphogenetic protein 2 mediated rabbit dental pulp stem cells seeded on nano-hydroxyapatite/collagen/poly(L-lactide). Tissue Eng Part A. 2011;17(19–20):2417–2433. doi:10.1089/ten.TEA.2010.0620
  • Zhao B, Chen J, Zhao L, Deng J, Li Q. A simvastatin-releasing scaffold with periodontal ligament stem cell sheets for periodontal regeneration. J Appl Biomater Funct Mater. 2020;18:2280800019900094. doi:10.1177/2280800019900094
  • Jauregui C, Yoganarasimha S, Madurantakam P. Mesenchymal Stem Cells Derived from Healthy and Diseased Human Gingiva Support Osteogenesis on Electrospun Polycaprolactone Scaffolds. Bioengineering. 2018;5(1):8. doi:10.3390/bioengineering5010008
  • Ishikawa T, Sugawara S, Kihara H, et al. Titanium nanoparticles potentially affect gingival tissue through IL-13α2 receptor expression. J Oral Sci. 2021;63(3):263–266. doi:10.2334/josnusd.21-0130
  • Ansari S, Pouraghaei Sevari S, Chen C, Sarrion P, Moshaverinia A. RGD-Modified Alginate-GelMA Hydrogel Sheet Containing Gingival Mesenchymal Stem Cells: a Unique Platform for Wound Healing and Soft Tissue Regeneration. ACS Biomater Sci Eng. 2021;7(8):3774–3782. doi:10.1021/acsbiomaterials.0c01571
  • Zhang J, Park YD, Bae WJ, et al. Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. J Biomater Appl. 2015;29(7):954–964. doi:10.1177/0885328214550896
  • Ding T, Kang W, Li J, Yu L, Ge S. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. J Nanobiotechnology. 2021;19(1):247. doi:10.1186/s12951-021-00992-4
  • Luo L, He Y, Jin L, et al. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater. 2020;6(3):638–654. doi:10.1016/j.bioactmat.2020.08.028
  • Zheng K, Feng G, Zhang J, et al. Basic fibroblast growth factor promotes human dental pulp stem cells cultured in 3D porous chitosan scaffolds to neural differentiation. Int J Neurosci. 2021;131(7):625–633. doi:10.1080/00207454.2020.1744592
  • Wang S, Gao X, Gong W, Zhang Z, Chen X, Dong Y. Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomater. 2014;10(6):2792–2803. doi:10.1016/j.actbio.2014.02.013
  • Huang M, Hill RG, Rawlinson SC. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): a therapeutic role for Sr in dentine repair? Acta Biomater. 2016;38:201–211. doi:10.1016/j.actbio.2016.04.037
  • Chen G, Chen J, Yang B, et al. Combination of aligned PLGA/Gelatin electrospun sheets, native dental pulp extracellular matrix and treated dentin matrix as substrates for tooth root regeneration. Biomaterials. 2015;52:56–70. doi:10.1016/j.biomaterials.2015.02.011
  • Li X, Zhang C, Haggerty AE, et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials. 2020;245:119978. doi:10.1016/j.biomaterials.2020.119978
  • Chedly J, Soares S, Montembault A, et al. Physical chitosan microhydrogels as scaffolds for spinal cord injury restoration and axon regeneration. Biomaterials. 2017;138:91–107. doi:10.1016/j.biomaterials.2017.05.024
  • Entekhabi E, Haghbin Nazarpak M, Moztarzadeh F, Sadeghi A. Design and manufacture of neural tissue engineering scaffolds using hyaluronic acid and polycaprolactone nanofibers with controlled porosity. Mater Sci Eng C Mater Biol Appl. 2016;69:380–387. doi:10.1016/j.msec.2016.06.078
  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: from Chemical-Physical Applications to Nanomedicine. Molecules. 2019;25(1):112. doi:10.3390/molecules25010112
  • Virlan MJ, Miricescu D, Radulescu R, et al. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules. 2016;21(2):207. doi:10.3390/molecules21020207
  • Lee YC, Chan YH, Hsieh SC, Lew WZ, Feng SW. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model. Int J Mol Sci. 2019;20(20):5015. doi:10.3390/ijms20205015
  • Jandt KD, Watts DC. Nanotechnology in dentistry: present and future perspectives on dental nanomaterials. Dent Mater. 2020;36(11):1365–1378. doi:10.1016/j.dental.2020.08.006
  • Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA. Antibacterial properties and toxicity from metallic nanomaterials. Int J Nanomedicine. 2017;12:3941–3965. doi:10.2147/IJN.S134526
  • Fan C, Ji Q, Zhang C, Xu S, Sun H, Li Z. TGF-β induces periodontal ligament stem cell senescence through increase of ROS production. Mol Med Rep. 2019;20(4):3123–3130. doi:10.3892/mmr.2019.10580
  • Li Y, Yang L, Hou Y, et al. Polydopamine-mediated graphene oxide and nanohydroxyapatite-incorporated conductive scaffold with an immunomodulatory ability accelerates periodontal bone regeneration in diabetes. Bioact Mater. 2022;18:213–227. doi:10.1016/j.bioactmat.2022.03.021
  • Singh Z. Applications and toxicity of graphene family nanomaterials and their composites. Nanotechnol Sci Appl. 2016;9:15–28. doi:10.2147/NSA.S101818
  • Rhazouani A, Gamrani H, El Achaby M, et al. Synthesis and Toxicity of Graphene Oxide Nanoparticles: a Literature Review of In Vitro and In Vivo Studies. Biomed Res Int. 2021;2021:5518999. doi:10.1155/2021/5518999
  • Deng R, Zhu Y, Wu X, Wang M. Toxicity and Mechanisms of Engineered Nanoparticles in Animals with Established Allergic Asthma. Int J Nanomedicine. 2023;18:3489–3508.
  • Zakrzewski W, Dobrzyński M, Zawadzka-Knefel A, et al. Nanomaterials Application in Endodontics. Materials. 2021;14(18):5296. doi:10.3390/ma14185296
  • Zhang H, Zhang Q, Deng Y, Chen M, Yang C. Improving Isolation of Extracellular Vesicles by Utilizing Nanomaterials. Membranes. 2021;12(1):55. doi:10.3390/membranes12010055
  • Sundaram K, Miller DP, Kumar A, et al. Plant-Derived Exosomal Nanoparticles Inhibit Pathogenicity of Porphyromonas gingivalis. iScience. 2019;21:308–327. doi:10.1016/j.isci.2019.10.032
  • Yin B, Ni J, Witherel CE, et al. Harnessing Tissue-derived Extracellular Vesicles for Osteoarthritis Theranostics. Theranostics. 2022;12(1):207–231. doi:10.7150/thno.62708
  • Yang Z, Liu D, Zhou H, et al. A New Nanomaterial Based on Extracellular Vesicles Containing Chrysin-Induced Cell Apoptosis Through Let-7a in Tongue Squamous Cell Carcinoma. Front Bioeng Biotechnol. 2021;9:766380. doi:10.3389/fbioe.2021.766380
  • Karamanidou T, Tsouknidas A. Plant-Derived Extracellular Vesicles as Therapeutic Nanocarriers. Int J Mol Sci. 2021;23(1):191. doi:10.3390/ijms23010191
  • Iezzi I, Pagella P, Mattioli-Belmonte M, Mitsiadis TA. The effects of ageing on dental pulp stem cells, the tooth longevity elixir. Eur Cell Mater. 2019;37:175–185. doi:10.22203/eCM.v037a11
  • Zhao W, Zhang H, Liu R, Cui R. Advances in Immunomodulatory Mechanisms of Mesenchymal Stem Cells-Derived Exosome on Immune Cells in Scar Formation. Int J Nanomedicine. 2023;18:3643–3662.
  • Singh H, Kumar V. Cellulosic Nanowhiskers: preparation and Drug Delivery Application. Curr Drug Deliv. 2021;18(10):1426–1434. doi:10.2174/1567201818666210525154345
  • Zeng A, Li H, Liu J, Wu M. The Progress of Decellularized Scaffold in Stomatology. Tissue Eng Regen Med. 2022;19(3):451–461. doi:10.1007/s13770-022-00432-w
  • Naskar A, Kim KS. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics. 2020;12(6):499. doi:10.3390/pharmaceutics12060499
  • Khalilov R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. Adv Biol Earth Sci. 2023;8(1):18.
  • Shahi S. Effect of gelatinous spongy scaffold containing nano-hydroxyapatite on the induction of odontogenic activity of dental pulp stem cells. J King Saud Univ Sci. 2022;34(8):102340.
  • Jazayeri HE, Tahriri M, Razavi M, et al. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):913–929. doi:10.1016/j.msec.2016.08.055
  • Ding Q, Cui J, Shen H, et al. Advances of nanomaterial applications in oral and maxillofacial tissue regeneration and disease treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;8:e1669. doi:10.1002/wnan.1669