364
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Application of Single Extracellular Vesicle Analysis Techniques

, , , , , , & ORCID Icon show all
Pages 5365-5376 | Received 15 May 2023, Accepted 12 Sep 2023, Published online: 20 Sep 2023

References

  • Kontopoulou E, Strachan S, Reinhardt K, et al. Evaluation of dsDNA from extracellular vesicles (EVs) in pediatric AML diagnostics. Ann Hematol. 2020;99(3):459–475. doi:10.1007/s00277-019-03866-w
  • Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289. doi:10.1146/annurev-cellbio-101512-122326
  • Nanou A, Mol L, Coumans FAW, Koopman M, Punt CJA, Terstappen L. Endothelium-derived extracellular vesicles associate with poor prognosis in metastatic colorectal cancer. Cells. 2020;9(12):2688. doi:10.3390/cells9122688
  • Agarwal V, Yadav SS, Kumar S, et al. Evaluating the role of extracellular vesicles as a biomarker under transmission electron microscope in prostate cancer and benign prostate hyperplasia patients. Urologia. 2022;89(2):210–215. doi:10.1177/03915603211018677
  • Kanada M, Bachmann MH, Hardy JW, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci USA. 2015;112(12):E1433–42. doi:10.1073/pnas.1418401112
  • Martinez MC, Andriantsitohaina R. Extracellular vesicles in metabolic syndrome. Circ Res. 2017;120(10):1674–1686. doi:10.1161/CIRCRESAHA.117.309419
  • Tkach M, Kowal J, Thery C. Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci. 2018;373(1737):20160479. doi:10.1098/rstb.2016.0479
  • Willms E, Cabanas C, Mager I, Wood MJA, Vader P. Extracellular vesicle heterogeneity: subpopulations, isolation techniques, and diverse functions in cancer progression. Front Immunol. 2018;9:738. doi:10.3389/fimmu.2018.00738
  • Mathiasen S, Christensen SM, Fung JJ, et al. Nanoscale high-content analysis using compositional heterogeneities of single proteoliposomes. Nat Methods. 2014;11(9):931–934. doi:10.1038/nmeth.3062
  • Panagopoulou MS, Wark AW, Birch DJS, Gregory CD. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles. 2020;9(1):1710020. doi:10.1080/20013078.2019.1710020
  • Shao H, Im H, Castro CM, Breakefield X, Weissleder R, Lee H. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–1950. doi:10.1021/acs.chemrev.7b00534
  • Bordanaba-Florit G, Royo F, Kruglik SG, Falcon-Perez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc. 2021;16(7):3163–3185. doi:10.1038/s41596-021-00551-z
  • Thery C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750
  • Pascucci L, Scattini G. Imaging extracellular vesicles by transmission electron microscopy: coping with technical hurdles and morphological interpretation. Biochim Biophys Acta Gen Subj. 2021;1865(4):129648. doi:10.1016/j.bbagen.2020.129648
  • Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition. Cell. 2019;177(2):428–445 e18. doi:10.1016/j.cell.2019.02.029
  • Kim G, Kim M, Lee Y, Byun JW, Hwang DW, Lee M. Systemic delivery of microRNA-21 antisense oligonucleotides to the brain using T7-peptide decorated exosomes. J Control Release. 2020;317:273–281. doi:10.1016/j.jconrel.2019.11.009
  • Zabeo D, Cvjetkovic A, Lasser C, Schorb M, Lotvall J, Hoog JL. Exosomes purified from a single cell type have diverse morphology. J Extracell Vesicles. 2017;6(1):1329476. doi:10.1080/20013078.2017.1329476
  • Neu PS, Geelen D, Thete A, Tromp RM, van der Molen SJ. Complementary LEEM and eV-TEM for imaging and spectroscopy. Ultramicroscopy. 2021;222:113199. doi:10.1016/j.ultramic.2020.113199
  • Rikkert LG, Nieuwland R, Terstappen L, Coumans FAW. Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J Extracell Vesicles. 2019;8(1):1555419. doi:10.1080/20013078.2018.1555419
  • Kotrbová A, Štěpka K, Maška M, et al. TEM ExosomeAnalyzer: a computer-assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images. J Extracell Vesicles. 2019;8(1):1560808. doi:10.1080/20013078.2018.1560808
  • Li MI, Xu X, Xi N, Wang W, Xing X, Liu L. Multiparametric atomic force microscopy imaging of single native exosomes. Acta Biochim Biophys Sin. 2021;53(3):385–388. doi:10.1093/abbs/gmaa172
  • Ridolfi A, Brucale M, Montis C, et al. AFM-based high-throughput nanomechanical screening of single extracellular vesicles. Anal Chem. 2020;92(15):10274–10282. doi:10.1021/acs.analchem.9b05716
  • Gazze SA, Thomas SJ, Garcia-Parra J, et al. High content, quantitative AFM analysis of the scalable biomechanical properties of extracellular vesicles. Nanoscale. 2021;13(12):6129–6141. doi:10.1039/d0nr09235e
  • Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The methods of choice for Extracellular Vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6). doi:10.3390/ijms18061153
  • Bachurski D, Schuldner M, Nguyen PH, et al. Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J Extracell Vesicles. 2019;8(1):1596016. doi:10.1080/20013078.2019.1596016
  • Kwon Y, Park J. Methods to analyze extracellular vesicles at single particle level. Micro Nano Syst Lett. 2022;10(1):14. doi:10.1186/s40486-022-00156-5
  • Sun L, Meckes DG. Methodological approaches to study extracellular vesicle miRNAs in Epstein–Barr virus-associated cancers. Int J Mol Sci. 2018;19(9):2810. doi:10.3390/ijms19092810
  • Vogel R, Coumans FA, Maltesen RG, et al. A standardized method to determine the concentration of extracellular vesicles using tunable resistive pulse sensing. J Extracell Vesicles. 2016;5:31242. doi:10.3402/jev.v5.31242
  • Akers JC, Ramakrishnan V, Nolan JP, et al. Comparative analysis of technologies for quantifying Extracellular Vesicles (EVs) in Clinical Cerebrospinal Fluids (CSF). PLoS One. 2016;11(2):e0149866. doi:10.1371/journal.pone.0149866
  • Weatherall E, Willmott GR. Applications of tunable resistive pulse sensing. Analyst. 2015;140(10):3318–3334. doi:10.1039/c4an02270j
  • Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016;113(8):E968–77. doi:10.1073/pnas.1521230113
  • van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–228. doi:10.1038/nrm.2017.125
  • Veziroglu EM, Mias GI. Characterizing extracellular vesicles and their diverse RNA contents. Front Genet. 2020;11:700. doi:10.3389/fgene.2020.00700
  • Tsering T, Li M, Chen Y, et al. EV-ADD, a database for EV-associated DNA in human liquid biopsy samples. J Extracell Vesicles. 2022;11(10):e12270. doi:10.1002/jev2.12270
  • Choi D, Montermini L, Jeong H, Sharma S, Meehan B, Rak J. Mapping subpopulations of cancer cell-derived extracellular vesicles and particles by nano-flow cytometry. ACS Nano. 2019;13(9):10499–10511. doi:10.1021/acsnano.9b04480
  • Cheung CK, Rajasekaran A, Barratt J, Rizk DV. An update on the current state of management and clinical trials for IgA nephropathy. J Clin Med. 2021;10(11):2493. doi:10.3390/jcm10112493
  • Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–166. doi:10.1016/j.nano.2011.05.016
  • Shen W, Guo K, Adkins GB, et al. A single Extracellular Vesicle (EV) flow cytometry approach to reveal EV heterogeneity. Angew Chem Int Ed Engl. 2018;57(48):15675–15680. doi:10.1002/anie.201806901
  • Zhu S, Ma L, Wang S, et al. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS Nano. 2014;8(10):10998–11006. doi:10.1021/nn505162u
  • Tian Y, Ma L, Gong M, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano. 2018;12(1):671–680. doi:10.1021/acsnano.7b07782
  • Liu C, Xu X, Li B, et al. Single-exosome-counting immunoassays for cancer diagnostics. Nano Lett. 2018;18(7):4226–4232. doi:10.1021/acs.nanolett.8b01184
  • Yang KS, Ciprani D, O’Shea A, et al. Extracellular vesicle analysis allows for identification of invasive IPMN. Gastroenterology. 2021;160(4):1345–1358 e11. doi:10.1053/j.gastro.2020.11.046
  • Li Y, Deng J, Han Z, et al. Molecular identification of tumor-derived extracellular vesicles using thermophoresis-mediated DNA computation. J Am Chem Soc. 2021;143(3):1290–1295. doi:10.1021/jacs.0c12016
  • Lin B, Tian T, Lu Y, et al. Tracing tumor-derived exosomal PD-L1 by dual-aptamer activated proximity-induced droplet digital PCR. Angew Chem Int Ed Engl. 2021;60(14):7582–7586. doi:10.1002/anie.202015628
  • He D, Ho SL, Chan HN, et al. Molecular-recognition-based DNA nanodevices for enhancing the direct visualization and quantification of single vesicles of tumor exosomes in plasma microsamples. Anal Chem. 2019;91(4):2768–2775. doi:10.1021/acs.analchem.8b04509
  • He D, Wang H, Ho SL, et al. Total internal reflection-based single-vesicle in situ quantitative and stoichiometric analysis of tumor-derived exosomal microRNAs for diagnosis and treatment monitoring. Theranostics. 2019;9(15):4494–4507. doi:10.7150/thno.33683
  • Chen C, Zong S, Liu Y, et al. Profiling of exosomal biomarkers for accurate cancer identification: combining DNA-PAINT with machine- learning-based classification. Small. 2019;15(43):e1901014. doi:10.1002/smll.201901014
  • Zhou J, Wu Z, Hu J, et al. High-throughput single-EV liquid biopsy: rapid, simultaneous, and multiplexed detection of nucleic acids, proteins, and their combinations. Sci Adv. 2020;6(47). doi:10.1126/sciadv.abc1204
  • Huang B. Super-resolution optical microscopy: multiple choices. Curr Opin Chem Biol. 2010;14(1):10–14. doi:10.1016/j.cbpa.2009.10.013
  • Groveman BR, Orru CD, Hughson AG, et al. Rapid and ultra-sensitive quantitation of disease-associated alpha-synuclein seeds in brain and cerebrospinal fluid by alphaSyn RT-QuIC. Acta Neuropathol Commun. 2018;6(1):7. doi:10.1186/s40478-018-0508-2
  • Nienhaus K, Nienhaus GU. Where do we stand with super-resolution optical microscopy? J Mol Biol. 2016;428(2 Pt A):308–322. doi:10.1016/j.jmb.2015.12.020
  • Su J. Label-free single exosome detection using frequency-locked microtoroid optical resonators. ACS Photonics. 2015;2(9):1241–1245. doi:10.1021/acsphotonics.5b00142
  • Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015;4:28533. doi:10.3402/jev.v4.28533
  • Horgan CC, Nagelkerke A, Whittaker TE, et al. Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling. J Mater Chem B. 2020;8(20):4447–4459. doi:10.1039/d0tb00620c
  • Penders J, Nagelkerke A, Cunnane EM, et al. Single particle automated raman trapping analysis of breast cancer cell-derived extracellular vesicles as cancer biomarkers. ACS Nano. 2021;15(11):18192–18205. doi:10.1021/acsnano.1c07075
  • Joshi GK, Deitz-McElyea S, Liyanage T, et al. Label-free nanoplasmonic-based short noncoding RNA Sensing at attomolar concentrations allows for quantitative and highly specific assay of microRNA-10b in biological fluids and circulating exosomes. ACS Nano. 2015;9(11):11075–11089. doi:10.1021/acsnano.5b04527
  • Liang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng. 2017;1:21. doi:10.1038/s41551-016-0021
  • Im H, Shao H, Park YI, et al. Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol. 2014;32(5):490–495. doi:10.1038/nbt.2886
  • Lim CZJ, Zhang Y, Chen Y, et al. Subtyping of circulating exosome-bound amyloid beta reflects brain plaque deposition. Nat Commun. 2019;10(1):1144. doi:10.1038/s41467-019-09030-2
  • Trueb J, Avci O, Sevenler D, Connor JH, Unlu MS. Robust visualization and discrimination of Nanoparticles by interferometric imaging. IEEE J Sel Top Quantum Electron. 2017;23(2):6900610. doi:10.1109/JSTQE.2016.2639824
  • Daaboul GG, Gagni P, Benussi L, et al. Digital detection of exosomes by interferometric imaging. Sci Rep. 2016;6:37246. doi:10.1038/srep37246
  • Li M, Soder R, Abhyankar S, et al. WJMSC-derived small extracellular vesicle enhance T cell suppression through PD-L1. J Extracell Vesicles. 2021;10(4):e12067. doi:10.1002/jev2.12067
  • Gori A, Romanato A, Bergamaschi G, et al. Membrane‐binding peptides for extracellular vesicles on-chip analysis. J Extracell Vesicles. 2020;9(1):1751428. doi:10.1080/20013078.2020.1751428
  • Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles. Nat Rev Drug Discov. 2022;21(5):379–399. doi:10.1038/s41573-022-00410-w
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
  • Kanth P, Inadomi JM. Screening and prevention of colorectal cancer. BMJ. 2021;374:n1855. doi:10.1136/bmj.n1855
  • Wang F, Zhang Y, Chen D, Zhang Z, Li Z. Single microbead-based fluorescent aptasensor (SMFA) for direct isolation and in situ quantification of exosomes from plasma. Analyst. 2021;146(10):3346–3351. doi:10.1039/d1an00463h
  • Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786–3788. doi:10.1172/jci60534
  • Tanaka M, Fernandez-Del Castillo C, Kamisawa T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 2017;17(5):738–753. doi:10.1016/j.pan.2017.07.007
  • Li P, Wang J, Gao M, Wang J, Ma Y, Gu Y. Membrane feature-inspired profiling of extracellular vesicles for pancreatic cancer diagnosis. Anal Chem. 2021;93(28):9860–9868. doi:10.1021/acs.analchem.1c01712
  • Feghhi M, Rezaie J, Akbari A, et al. Effect of multi-functional polyhydroxylated polyhedral oligomeric silsesquioxane (POSS) nanoparticles on the angiogenesis and exosome biogenesis in human umbilical vein endothelial cells (HUVECs). Mater.Des. 2021;197. doi:10.1016/j.matdes.2020.109227
  • Kordelas L, Rebmann V, Ludwig AK, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28(4):970–973. doi:10.1038/leu.2014.41
  • Sprooten J, Ceusters J, Coosemans A, et al. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology. 2019;8(11):e1638212. doi:10.1080/2162402X.2019.1638212
  • Rana S, Zöller M. Exosome target cell selection and the importance of exosomal tetraspanins: a hypothesis. Biochem Soc Trans. 2011;39(2):559–562. doi:10.1042/bst0390559
  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–345. doi:10.1038/nbt.1807
  • Kamerkar S, LeBleu VS, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546(7659):498–503. doi:10.1038/nature22341
  • Ahmadi M, Mahmoodi M, Shoaran M, Nazari-Khanamiri F, Rezaie J. Harnessing normal and engineered mesenchymal stem cells derived exosomes for cancer therapy: opportunity and challenges. Int J Mol Sci. 2022;23(22). doi:10.3390/ijms232213974
  • Saunders C, Foote JEJ, Wojciechowski JP, et al. Revealing population heterogeneity in vesicle-based nanomedicines using automated, single particle raman analysis. ACS Nano. 2023;17(12):11713–11728. doi:10.1021/acsnano.3c02452
  • Chen C, Zhu S, Wang S, Zhang W, Cheng Y, Yan X. Multiparameter quantification of liposomal nanomedicines at the single-particle level by high-sensitivity flow cytometry. ACS Appl Mater Interfaces. 2017;9(16):13913–13919. doi:10.1021/acsami.7b01867
  • Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell. 2016;30(6):836–848. doi:10.1016/j.ccell.2016.10.009
  • Bobrie A, Krumeich S, Reyal F, et al. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 2012;72(19):4920–4930. doi:10.1158/0008-5472.CAN-12-0925
  • Luzio JP, Hackmann Y, Dieckmann NM, Griffiths GM. The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol. 2014;6(9):a016840. doi:10.1101/cshperspect.a016840
  • Bano R, Ahmad F, Mohsin M. A perspective on the isolation and characterization of extracellular vesicles from different biofluids. RSC Adv. 2021;11(32):19598–19615. doi:10.1039/d1ra01576a
  • Yu S, Huang M, Wang J, Zheng Y, Xu H. Extracellular vesicles in tumor diagnosis: a mini-review. Curr Mol Med. 2021;21(7):596–606. doi:10.2174/1573405616666201209103154
  • Rezaie J, Nejati V, Mahmoodi M, Ahmadi M. Mesenchymal stem cells derived extracellular vesicles: a promising nanomedicine for drug delivery system. Biochem Pharmacol. 2022;203:115167. doi:10.1016/j.bcp.2022.115167
  • Hassanpour M, Rezaie J, Darabi M, Hiradfar A, Rahbarghazi R, Nouri M. Autophagy modulation altered differentiation capacity of CD146(+) cells toward endothelial cells, pericytes, and cardiomyocytes. Stem Cell Res Ther. 2020;11(1):139. doi:10.1186/s13287-020-01656-0
  • Almohammai A, Rahbarghazi R, Keyhanmanesh R, Rezaie J, Ahmadi M. Asthmatic condition induced the activity of exosome secretory pathway in rat pulmonary tissues. J Inflamm. 2021;18(1):14. doi:10.1186/s12950-021-00275-7