659
Views
4
CrossRef citations to date
0
Altmetric
REVIEW

How Synthesis of Algal Nanoparticles Affects Cancer Therapy? – A Complete Review of the Literature

ORCID Icon, ORCID Icon, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 6601-6638 | Received 22 Jun 2023, Accepted 22 Sep 2023, Published online: 10 Nov 2023

References

  • El-Kassas HY, El-Sheekh MM. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed Corallina officinalis on the MCF-7 human breast cancer cell line. Asian Pac J Cancer Prev. 2014;15:4311–4317. doi:10.7314/apjcp.2014.15.10.4311
  • Diab T, Alkafaas SS, Shalaby TI, Hessien M. Dexamethasone simulates the anticancer effect of nano-formulated paclitaxel in breast cancer cells. Bioorg Chem. 2020a;99:103792. doi:10.1016/j.bioorg.2020.103792
  • Diab T, Alkafaas SS, Shalaby TI, Hessien M. Paclitaxel nanoparticles induce apoptosis and regulate txr1, cyp3a4 and cyp2c8 in breast cancer and hepatoma cells. Anticancer Agents Med Chem. 2020b;20:1582–1591. doi:10.2174/1871520620666200504071530
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. doi:10.3322/caac.21492
  • AlKafaas SS, Diab T, Shalaby T, Hessien M. Dexamethasone improves the responsiveness of hepatoma cells for both free and solvent containing paclitaxel in vitro. Egypt J Biochem Mol Biol. 2019;37:1–2.
  • Somu P, Paul S. Supramolecular nanoassembly of lysozyme and α-lactalbumin (apo α-LA) exhibits selective cytotoxicity and enhanced bioavailability of curcumin to cancer cells. Colloids Surf B. 2019;178:297–306. doi:10.1016/j.colsurfb.2019.03.016
  • Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. 2021;199:1812–1822. doi:10.1007/s12011-020-02304-7
  • Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O’Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol. 2006;7:657–667. doi:10.1016/S1470-2045(06)70793-8
  • El-Sheekh M, Alwaleed EA, Kassem WMA, Saber H. Antialgal and anticancer activities of the algal silver nanoparticles against the toxic cyanobacterium Microcystis aeruginosa and human tumor colon cell line. Environ Nanotechnol Monit Manag. 2020;14:100352. doi:10.1016/j.enmm.2020.100352
  • Sargazi S, Laraib U, Er S, et al. Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials. 2022;27:1102. doi:10.3390/nano12071102
  • Abd Elkodous M, El-Husseiny HM, El-Sayyad GS, et al. Recent advances in waste-recycled nanomaterials for biomedical applications: waste-to-wealth. Nanotechnol Rev. 2021;10:1662–1739. doi:10.1515/ntrev-2021-0099
  • Abdelsalam IM, Ghosh S, AlKafaas SS, et al. Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia. 2023;78:163–178. doi:10.1007/s11756-022-01251-z
  • Das RK, Pachapur VL, Lonappan L, et al. Biological synthesis of metallic nanoparticles: plants, animals, and microbial aspects. Nanotechnol Environ Eng. 2017;2:18. doi:10.1007/s41204-017-0029-4
  • Zhang D, Ma XL, Gu Y, Huang H, Zhang GW. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front Chem. 2020;8:799. doi:10.3389/fchem.2020.00799
  • Rajamohan R, Ashokkumar S, Lee YR. Environmental free synthesis of biologically active Cu2O nanoparticles for the cytotoxicity. J Mol Struc. 2023;1271:134081. doi:10.1016/j.molstruc.2022.134081
  • Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13:223–245‏. doi:10.1080/17518253.2020.1802517
  • Setyawati MI, Tay CY, Bay BH, Leong DT. Gold nanoparticles induced endothelial leakiness depends on particle size and endothelial cell origin. ACS Nano. 2017;11:5020–5030. doi:10.1021/acsnano.7b01744
  • Tay CY, Setyawati MI, Leong DT. Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano. 2017;11:2764–2772. doi:10.1021/acsnano.6b07806
  • Wang J, Zhang L, Peng F, Shi X, Leong DT. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem Mater. 2018;30:3759–3767. doi:10.1021/acs.chemmater.8b00840
  • Ganbold T, Han S, Hasi A, Baigude H. Receptor-mediated delivery of therapeutic RNA by peptide functionalized curdlan nanoparticles. Int J Biol Macromol. 2019;126:633–640. doi:10.1016/j.ijbiomac.2018.12.152
  • Ge H, Wang D, Pan Y, et al. Sequence‐dependent DNA functionalization of upconversion nanoparticles and their programmable assemblies. Angew Chem Int Ed Engl. 2020;59:8133–8137. doi:10.1002/anie.202000831
  • Guan B, Zhang X. Aptamers as versatile ligands for biomedical and pharmaceutical applications. Int J Nanomed. 2020;Volume 15:1059–1071. doi:10.2147/IJN.S237544
  • Jia X, Guo M, Han Q, et al. Synergetic tumor probes for facilitating therapeutic delivery by combined-functionalized peptide ligands. Anal Chem. 2020;92:5650–5655. doi:10.1021/acs.analchem.0c00440
  • Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: a comparison of strategies. J Control Release. 2020;320:180–200. doi:10.1016/j.jconrel.2020.01.035
  • Bakshi S, Zakharchenko A, Minko S, Kolpashchikov DM, Katz E. Towards nanomaterials for cancer theranostics: a system of DNA-modified magnetic nanoparticles for detection and suppression of RNA marker in cancer cells. Magnetochemistry. 2019;5:24. doi:10.3390/magnetochemistry5020024
  • Das M, Shen L, Liu Q, Goodwin TJ, Huang LJ. Nanoparticle delivery of RIG-I agonist enables effective and safe adjuvant therapy in pancreatic cancer. Mol Ther. 2019;27:507–517. doi:10.1016/j.ymthe.2018.11.012
  • González-Ballesteros N, Diego-González L, Lastra-Valdor M, et al. Immunostimulant and biocompatible gold and silver nanoparticles synthesized using the Ulva intestinalis L. aqueous extract. J Mate Chem. 2019;7:4677–4691. doi:10.1039/C9TB00215D
  • Kim U, Kim C-Y, Lee JM, et al. Phloretin inhibits the human prostate cancer cells through the generation of reactive oxygen species. Pathol Oncol Res. 2020;26:977–984. doi:10.1007/s12253-019-00643-y
  • Khan S, Ansari AA, Khan AA, Abdulla M, Al-Obaid O, Ahmad R. In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles. Colloids Surf B. 2017;153:320–326. doi:10.1016/j.colsurfb.2017.03.005
  • Varlamova EG, Goltyaev MV, Mal’tseva VN, et al. Mechanisms of the cytotoxic effect of selenium nanoparticles in different human cancer cell lines. Int J Mol Sci. 2021;22:7798. doi:10.3390/ijms22157798
  • Turovsky EA, Varlamova EG. Mechanism of Ca2+-dependent pro-apoptotic action of selenium nanoparticles, mediated by activation of Cx43 hemichannels. Biology. 2021;10:743. doi:10.3390/biology10080743
  • Bhowmik T, Gomes A. Down–regulation of cyclin–dependent kinase-4 and MAPK through estrogen receptor mediated cell cycle arrest in human breast cancer induced by gold nanoparticle tagged toxin protein NKCT1. Chem Biol Interact. 2017;268:119–128. doi:10.1016/j.cbi.2017.03.009
  • Dabirian E, Hajipour A, Mehrizi AA, et al. Nanoparticles application on fuel production from biological resources: a review. Fuel. 2023;331:125682. doi:10.1016/j.fuel.2022.125682
  • El-Sheekh MM, Deyab M, Hassan NI, Seham E, Abu Ahmed SE. Bioadsorption of Fe (II) ions from aqueous solution using Sargassum latifolium aqueous extract and its synthesized silver nanoparticles. Int J Phytoremediation. 2022;14:1–14. doi:10.1080/15226514.2022.2145000
  • Pitchai P, Subramani P, Selvarajan R, Sankar R, Vilwanathan R, Sibanda T. Green synthesis of gold nanoparticles (AuNPs) using Caulerpa racemosa and evaluation of its antibacterial and cytotoxic activity against human lung cancer cell line. Arab J Basic Appl Sci. 2022;29:351–362. doi:10.1080/25765299.2022.2127510
  • Chaudhary R, Nawaz K, Khan AK, Hano C, Abbasi BH, Anjum S. An overview of the algae-mediated biosynthesis of nanoparticles and their biomedical applications. Biomolecules. 2020;10:1498. doi:10.3390/biom10111498
  • Gheda S, El-Sheekh M, Abou-Zeid A. In vitro anticancer activity of polysaccharide extracted from red alga Jania rubens against breast and colon cancer cell lines. Asian Pac J Trop Med. 2018;11:583–589. doi: 10.4103/1995-7645.244523
  • El-Sheekh MM, Shabaan MT, Hassan L, Morsi HH. Antiviral activity of algae biosynthesized silver and gold nanoparticles against herps simplex (HSV-1) virus in vitro using cell-line culture technique. Int J Environ Health Res. 2022b;32:616–627. doi:10.1080/09603123.2020.1789946
  • Borowitzka MA. High-value products from microalgae their development and commercialization. J Appl Phycol. 2013;25:743–756. doi:10.1007/s10811-013-9983-9
  • de Arruda MCS, da Silva MROB, Cavalcanti VLR, et al. Antitumor lectins from algae: a systematic review. Algal Res. 2023;70:102962. doi:10.1016/j.algal.2022.102962
  • Mukherjee A, Sarkar D, Sasmal S. A review of green synthesis of metal nanoparticles using algae. Front Microbiol. 2021;12:693899. doi:10.3389/fmicb.2021.693899
  • Ahmed A, Usman M, Ji Z, et al. Nature-inspired biogenic synthesis of silver nanoparticles for antibacterial applications. Mater Today Chem. 2023;27:101339. doi:10.1016/j.mtchem.2022.101339
  • Gahlawat G, Choudhury AR. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 2019;9:12944–12967. doi:10.1039/C8RA10483B
  • Shantkriti S, Pradeep M, Unish KK, et al. Biosynthesis of silver nanoparticles using Dunaliella salina and its antibacterial applications. Appl Surf Sci Adv. 2023;13:100377. doi:10.1016/j.apsadv.2023.100377
  • Boukarma L, Aziam R, Abali M, et al. Algal biomass valorization for the removal of heavy metal ions. In: Lichtfouse E, Muthu SS, Khadir A, editors. Inorganic-Organic Composites for Water and Wastewater Treatment. Environmental Footprints and Eco-Design of Products and Processes. Singapore: Springer; 2022:267–302. doi:10.1007/978-981-16-5928-7_8
  • Makarov VV, Love AJ, Sinitsyna OV, et al. Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 2014;6:35–44. doi:10.32607/20758251-2014-6-1-35-44
  • Gowramma B, Keerthi U, Rafi M, Muralidhara Rao D. Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech. 2015;5:195–201. doi:10.1007/s13205-014-0210-4
  • Palaniyandi T, Baskar G, Bhagyalakshmi V, et al. Biosynthesis of iron nanoparticles using brown algae Spatoglossum asperum and its antioxidant and anticancer activities through in vitro and in silico studies. Particulate Sci Technol. 2023;41:916–929. doi:10.1080/02726351.2022.2159900
  • El-Saadony MT, Sitohy MZ, Ramadan MF, Saad AM. Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innov Food Sci Emerg Technol. 2021;69:102645. doi:10.1016/j.ifset.2021.102645
  • Saad AM, Sitohy MZ, Sultan-Alolama MI, El-Tarabily KA, El-Saadony MT. Green nanotechnology for controlling bacterial load and heavy metal accumulation in Nile tilapia fish using biological selenium nanoparticles biosynthesized by Bacillus subtilis AS12. Front Microbiol. 2022;13:1015613‏. doi:10.3389/fmicb.2022.1015613
  • Baker S, Harini B, Rakshith D, Satish S. Marine microbes: invisible nanofactories. J Pharm Res. 2013;6:83–388. doi:10.1016/j.jopr.2013.03.001
  • Bhattacharya D, Gupt R. Nanotechnology and potential of microorganisms. Crit Rev Biotechnol. 2005;25:1199–1204. doi:10.1080/07388550500361994
  • Singh A, Jain D, Upadhyay M, Khandelwal N, Verma H. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Dig J Nanomater Bios. 2010;5:483–489.
  • Sathishkumar M, Sneha K, Yun Y. Palladium nanocrystal synthesis using Curcuma longa tuber extract. Int J Mater Sci. 2009;4:11–17.
  • Sriramulu M, Shanmugam S, Ponnusamy VK. Agaricus bisporus mediated biosynthesis of copper nanoparticles and its biological effects: an in vitro study. Colloids Interface Sci Commun. 2020;35:100254. doi:10.1016/j.colcom.2020.100254
  • Beveridge T, Murray R. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol. 1980;141:876–887. doi:10.1128/Fjb.141.2.876-887.1980
  • Mehra RK, Winge DR. Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem. 1991;45:30–40. doi:10.1002/jcb.240450109
  • Southam G, Beveridge TJ. The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta. 1994;58:4527–4530. doi:10.1016/0016-7037(94)90355-7
  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–2650. doi:10.1039/C1GC15386B
  • Narayanan KB, Sakthivel N. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett. 2008;62:4588–4590. doi:10.1016/j.matlet.2008.08.044
  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J. 2016;24:473–484. doi:10.1016/j.jsps.2014.11.013
  • Lengke MF, Fleet ME, Southam G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)− thiosulfate and gold (III)− chloride complexes. Langmuir. 2006;22:2780–2787. doi:10.1021/la052652c
  • Abdeen S, Geo S, Praseetha P, Dhanya R. Biosynthesis of silver nanoparticles from actinomycetes for therapeutic applications. Int J Nanodimension. 2014;5:155–162. doi:10.7508/ijnd.2014.02.008
  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Applied Microbiol Biotechnol. 2014;98:8083–8097. doi:10.1007/s00253-014-5953-7
  • Karthik L, Kumar G, Kirthi AV, Rahuman A, Bhaskara Rao K. Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess Biosyst Eng. 2014;37:261–267. doi:10.1007/s00449-013-0994-3
  • Abd-Elhady HM, Ashor MA, Hazem A, et al. Biosynthesis and characterization of extracellular silver nanoparticles from Streptomyces aizuneusis: antimicrobial, anti-larval, and anticancer activities. Molecules. 2022;27:212. doi:10.3390/molecules27010212
  • Korbekandi H, Iravani S, Abbasi S. Production of nanoparticles using organisms. Crit Rev Biotechnol. 2009;29:279–306. doi:10.3109/07388550903062462
  • Shah R, Oza G, Pandey S, Sharon M. Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res. 2012;2:485–492.
  • Rai A, Singh A, Ahmad A, Sastry M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanoparticles. Langmuir. 2006;22:736–741. doi:10.1021/la052055q
  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett. 2007;61:3984–3987. doi:10.1016/j.matlet.2007.01.018
  • Kumar A, Kaur K, Sharma S. Synthesis, characterization, and antibacterial potential of silver nanoparticles by Morus nigra leaf extract. Indian J Pharm Biol Res. 2013a;1:16–24. doi:10.30750/ijpbr.1.4.4
  • Mohanpuria P, Rana NK, Yadav SK. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res. 2008;10:507–517. doi:10.1007/s11051-007-9275-x
  • Prasad TNV, Subba Rao Kambala V, Naidu R. A critical review on biogenic silver nanoparticles and their antimicrobial activity. Curr Nanosci. 2011;7:531–544. doi:10.2174/157341311796196736
  • Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed. 2012;2:953–959. doi:10.1016/S2221-1691(13)60006-4
  • Iravani S. Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices. 2014;18:359316. doi:10.1155/2014/359316
  • Ahmad A, Senapati S, Khan MI, et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology. 2003;14:824. doi:10.1088/0957-4484/14/7/323
  • Constantin M, Spiridon M, VIchim DL, et al. Synthesis, biological and catalytic activity of silver nanoparticles generated and covered by oxidized pullulan. Mater Chem Phys. 2023;295:127141. doi:10.1016/j.matchemphys.2022.127141
  • Husseiny M, Abdel-Aziz M, Badr Y, Mahmoud M. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc. 2007;67:1003–1006. doi:10.1016/j.saa.2006.09.028
  • Lin Z, Fu J, Wu J, Liu Y, Cheng H. Preliminary study on the mechanism of non-enzymatic bioreduction of precious metal ions. Acta Phys -Chim Sin. 2001;17:477–480. doi:10.3866/PKU.WHXB20010520
  • Leong YK, Show PL, Ooi CW, Ling TC, Lan JC-W. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol. 2014;180:52–65. doi:10.1016/j.jbiotec.2014.03.020
  • Pakalapati H, Chang CK, Show PL, Arumugasamy SK, Lan JCW. Development of polyhydroxyalkanoates production from waste feedstocks and applications. J Biosci Bioeng. 2018;126:282–292. doi:10.1016/j.jbiosc.2018.03.016
  • Pesante G, Frison N. Recovery of bio-based products from PHA-rich biomass obtained from biowaste: a review. Bioresour Technol Rep. 2023;21:101345. doi:10.1016/j.biteb.2023.101345
  • Dhillon GS, Brar SK, Kaur S, Verma M. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol. 2012;32:449–473. doi:10.3109/07388551.2010.550568
  • Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mat Chem. 2003;13:1822–1826. doi:10.1039/B303808B
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 2007;61:1413–1418. doi:10.1016/j.matlet.2006.07.042
  • Kathiresan K, Manivannan S, Nabeel M, Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B. 2009;71:133–137. doi:10.1016/j.colsurfb.2009.01.016
  • Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc. 2009;73:374–381. doi:10.1016/j.saa.2009.02.037
  • Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156:1–13. doi:10.1016/j.cis.2010.02.001
  • Volesky B, Holan Z. Biosorption of heavy metals. Biotech Prog. 1995;11:235–250. doi:10.1021/bp00033a001
  • Mukherjee P, Senapati S, Mandal D, et al. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem BioChem. 2002;3:461–463. doi:10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2005;1:47–53. doi:10.1166/jbn.2005.012
  • Kale A, Bao Y, Zhou Z, Prevelige PE, Gupta A. Directed self-assembly of CdS quantum dots on bacteriophage P22 coat protein templates. Nanotechnology. 2013;24:045603. doi:10.1088/0957-4484/24/4/045603
  • Kulkarni N, Muddapur UJ. Biosynthesis of metal nanoparticles: a review. J Nanotechnol. 2014;510246. doi:10.1155/2014/510246
  • Khan AA, Fox EK, GóRzny MŁ, et al. pH control of the electrostatic binding of gold and iron oxide nanoparticles to tobacco mosaic virus. Langmuir. 2013;29:2094–2098. doi:10.1021/la3044126
  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK. Green chemistry based benign routes for nanoparticle synthesis. J Nanopart. 2014;302429. doi:10.1155/2014/302429
  • Akhtar MS, Panwar J, Yun Y. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem Eng. 2013;1:591–602. doi:10.1021/sc300118u
  • Dwivedi AD, Gopal K. Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf A Physicochem Eng Asp. 2010;369:27–33. doi:10.1016/j.colsurfa.2010.07.020
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv. 2013;31:346–356. doi:10.1016/j.biotechadv.2013.01.003
  • Rambabu K, Bharath G, Banat F, Show PL. Green synthesis of zinc oxide nanoparticles using Phoenix dactylifera waste as bioreductant for effective dye degradation and antibacterial performance in wastewater treatment. J Hazard Mater. 2021;402:123560‏. doi:10.1016/j.jhazmat.2020.123560
  • Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. Gold nanoparticles are produced in a microalga. J Nanopart Res. 2011;13:6439–6445. doi:10.1007/s11051-011-0397-9
  • Xie J, Lee JY, Wang DI, Ting YP. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 2007b;1:429–439. doi:10.1021/nn7000883
  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G. Silver, gold, and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci. 2008;43:5115–5122. doi:10.1007/s10853-008-2745-4
  • Singaravelu G, Arockiamary J, Kumar VG, Govindaraju K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B. 2007;57:97–101. doi:10.1016/j.colsurfb.2007.01.010
  • Rajasulochana P, Krishnamoorthy P, Dhamotharan R. Potential application of Kappaphycus alvarezii in agricultural and pharmaceutical industry. J Chem Pharm Res. 2012;4:33–37.
  • Mata YN, Torres E, Blazquez ML, Ballester A, González FMJA, Munoz JA. Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater. 2009;166:612–618. doi:10.1016/j.jhazmat.2008.11.064
  • Senapati S, Syed A, Moeez S, Kumar A, Ahmad A. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett. 2012;79:116–118. doi:10.1016/j.matlet.2012.04.009
  • Castro L, Blázquez ML, Muñoz JA, González F, Ballester A. Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol. 2013;7:109–116. doi:10.1049/iet-nbt.2012.0041
  • El-Sheekh MM, Deyab MA, Hassan NI, Abu Ahmed SE. Bioremediation of malachite green dye using sodium alginate, Sargassum latifolium extract, and their silver nanoparticles. BMC Chem. 2023;17:108. doi:10.1186/s13065-023-01022-0
  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ. Green synthesis of metallic nanoparticles via biological entities. Materials. 2015;8:7278–7308. doi:10.3390/ma8115377
  • Hossain M, Su M. Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. J Phys Chem. 2012;116:23047–23052. doi:10.1021/jp306543q
  • Mcnamara A, Kam W, Scales N, et al. Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol. Phys Med Biol. 2016;61:5993. doi:10.1088/0031-9155/61/16/5993
  • Kwatra D, Venugopal A, Anant S. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer. Transl Cancer Res. 2013;2:330–342. doi:10.3978/j.issn.2218-676X.2013.08.06
  • Hashemi S, Aghamiri M, Kahani M, Jaberi R. Investigation of gold nanoparticle effects in brachytherapy by an electron emitter ophthalmic plaque. Int J Nanomed. 2019;14:4157–4165. doi:10.2147/IJN.S205814
  • Altundal Y, Cifter G, Detappe A, et al. New potential for enhancing concomitant chemoradiotherapy with FDA approved concentrations of cisplatin via the photoelectric effect. Physica Medica. 2015;31:25–30. doi:10.1016/j.ejmp.2014.11.004
  • Gao Y, Chen K, Ma -L-L, Gao F. Cerium oxide nanoparticles in cancer. OncoTargets Ther. 2014;7:835–840. doi:10.2147/OTT.S62057
  • Vodyashkin AA, Kezimana P, Prokonov FY, Vasilenko IA, Stanishevskiy YM. Current methods for synthesis and potential applications of cobalt nanoparticles: a review. Crystals. 2022;12:272. doi:10.3390/cryst12020272
  • Bilal M, Mehmood S, Rasheed T, Iqbal HMN. Bio-catalysis and biomedical perspectives of magnetic nanoparticles as versatile carriers. Magnetochemistry. 2019;5:42. doi:10.3390/magnetochemistry5030042
  • Abbasi BA, Iqbal J, Khan Z, et al. Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc Res Tech. 2021;84:192–201. doi:10.1002/jemt.23577
  • Chattopadhyay S, Dash SK, Tripathy S, et al. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study. Chem Biol Interact. 2015;226:58–71. doi:10.1016/j.cbi.2014.11.016
  • Papis E, Gornati R, Prati M, Ponti J, Sabbioni E, Bernardini G. Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblasts exposed to cobalt particles and ions. Toxico Letters. 2007;170:185–192. doi:10.1016/j.toxlet.2007.03.005
  • Colognato R, Bonelli A, Ponti J, et al. Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis. 2008;23:377–382. doi:10.1093/mutage/gen024
  • Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008;21:1726–1732. doi:10.1021/tx800064j
  • Hu W, Culloty S, Darmody G, et al. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere. 2014;108:289–299. doi:10.1016/j.chemosphere.2014.01.054
  • Raj DP, Shairam M, Suganya N, et al. Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer. J Biol Inorg Chem. 2019;24:633–645. doi:10.1007/s00775-019-01676-z
  • Gnanavel V, Palanichamy V, Roopan SM. Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J Photochem Photobiol B Biol. 2017;171:133–138. doi:10.1016/j.jphotobiol.2017.05.001
  • Taherzadeh‑Soureshjani P, Chehelgerdi M. Algae‑meditated route to cuprous oxide (Cu2O) nanoparticle: differential expression profile of MALAT1 and GAS5 LncRNAs and cytotoxic effect in human breast cancer. Cancer Nanotechnol. 2020;11:11. doi:10.1186/s12645-020-00066-4
  • Bensy ADV, Christobel GJ, Muthusamy K, Alfarhan A, Anantharaman P. Green synthesis of iron nanoparticles from Ulva lactuca and bactericidal activity against enteropathogens. J King Saud Univ Sci. 2022;34:101888. doi:10.1016/j.jksus.2022.101888
  • Alphandéry E. Bio-synthesized iron oxide nanoparticles for cancer treatment. Intl J Pharm. 2020;586:119472. doi:10.1016/j.ijpharm.2020.119472
  • Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2:282–289. doi:10.4103/0975-7406.72127
  • Wu H, Yin -J-J, Wamer WG, Zeng M, Lo YM. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal. 2014;22:86–94. doi:10.1016/j.jfda.2014.01.007
  • Seabra AB, Haddad P, Duran N. Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET Nanobiotech. 2013;7:90–99. doi:10.1049/iet-nbt.2012.0047
  • Haris M, Fatima N, Iqbal J, et al. Oscillatoria limnetica mediated green synthesis of iron oxide (Fe2O3) nanoparticles and their diverse in vitro bioactivities. Molecules. 2023;28:2091. doi:10.3390/molecules28052091
  • Alangari A, Alqahtani MS, Mateen A, et al. Iron oxide nanoparticles: preparation, characterization, and assessment of antimicrobial and anticancer activity. Adsorp Sci Technol. 2022;2022:1–9. doi:10.1155/2022/1562051
  • Zarzzeka C, Goldoni J, Marafon F, et al. Use of titanium dioxide nanoparticles for cancer treatment: a comprehensive review and bibliometric analysis. Biocatal Agric Biotechnol. 2023;50:102710. doi:10.1016/j.bcab.2023.102710
  • Mccarthy J, Inkielewicz-StęPniak I, Corbalan JJ, Radomski MW. Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol. 2012;25:2227–2235. doi:10.1021/tx3002884
  • Zheng Y, Wang Z, Peng F, Fu L. Application of biosynthesized ZnO nanoparticles on an electrochemical H2O2 biosensor. Braz J Pharm Sci. 2016;52:781–786. doi:10.1590/S1984-82502016000400023
  • Shukla AK, Iravani S. Metallic nanoparticles: green synthesis and spectroscopic characterization. Environ Chem Lett. 2017;15:223–231. doi:10.1007/s10311-017-0618-2
  • Sharma G, Jasuja ND, Kumar M, Ali MI. Biological synthesis of silver nanoparticles by cell-free extract of Spirulina platensis. J Nanotechnol. 2015;2015:132675. doi:10.1155/2015/132675
  • Sharma D, Kanchi S, Bisetty K. Biogenic synthesis of nanoparticles: a review. Arab J Chem. 2019;12:3576–3600. doi:10.1016/j.arabjc.2015.11.002
  • Poinern GEJ. A Laboratory Course in Nanoscience and Nanotechnology. Boca Raton, Florida: CRC Press; 2014:261.
  • Verma VC, Kharwar RN, Gange AC. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine. 2010;5:33–40. doi:10.2217/nnm.09.77
  • Aboelfetoh EF, El-Shenody RA, Ghobara MM. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess. 2017;189:349. doi:10.1007/s10661-017-6033-0
  • Jena J, Pradhan N, Dash BP, Sukla LB, Panda PK. Biosynthesis, and characterization of silver nanoparticles using microalga Chlorococcum humicola and its antibacterial activity. Int J Nanomater Biostruct. 2013;3:1–8.
  • Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017;12:908. doi:10.1016/j.arabjc.2017.05.011
  • Dahoumane SA, Wujcik EK, Jeffryes C. Noble metal, oxide and chalcogenide-based nanomaterials from scalable phototrophic culture systems. Enzyme Microb Technol. 2016;95:13–27. doi:10.1016/j.enzmictec.2016.06.008
  • Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci. 2016;17:1534‏. doi:10.3390/ijms17091534
  • Rajathi FAA, Parthiban C, Kumar VG, Anantharaman P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). Spectrochim Acta A Mol Biomol Spectrosc. 2012;99:166–173. doi:10.1016/j.saa.2012.08.081
  • Tomaszewska E, Soliwoda K, Kadziola K, et al. Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomater. 2013;2013:313081. doi:10.1155/2013/313081
  • Shard AG, Schofield RC, Minelli C. Ultraviolet–visible spectrophotometry. In: Hodoroaba V, Unger WES, Shard AG, editors. Micro and Nano Technologies, Characterization of Nanoparticles. Amsterdam, Netherlands: Elsevier; 2020:185–196. doi:10.1016/B978-0-12-814182-3.00012-2
  • Hall BD, Zanchet D, Ugarte D. Estimating nanoparticle size from diffraction measurements. J Appl Crystallogr. 2000;33:1335–1341. doi:10.1107/S0021889800010888
  • Deloncle R, Coppel Y, Rebout C, Majoral JP, Caminade AM. Characterization of two series of nitrogen‐containing dendrimers by natural abundance 15N NMR. Magn Reson Chem. 2008;46:493–496. doi:10.1002/mrc.2203
  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem. 2011;83:4453–4488. doi:10.1021/ac200853a
  • Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv. 2014;32:711–726. doi:10.1016/j.biotechadv.2013.11.006
  • Sharma G, Pandey S, Ghatak S, Watal G, Rai PK. Potential of spectroscopic techniques in the characterization of “green nanomaterials”. In: Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK, editors. Nanomaterials in Plants, Algae and Microorganisms: Concepts and Controversies. Amsterdam, The Netherland: Elsevier; 2018:59–77. doi:10.1016/B978-0-12-811487-2.00003-7
  • Lange H. Comparative test of methods to determine particle size and particle size distribution in the submicron range. Part Part Syst Charact. 1995;12:148–157. doi:10.1002/ppsc.19950120307
  • Bootz A, Vogel V, Schubert D, Kreuter J. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly (butyl cyanoacrylate) nanoparticles. Eur J Pharm Biopharm. 2004;57:369–375. doi:10.1016/S0939-6411(03)00193-0
  • Stephan TS, Scott EM, Anil KP, Marina AD. Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. In: Amiji MM, editor. Nanotechnology for Cancer Therapy. Boca Raton, FL, USA: CRC Press; 2006:105–137.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci. 2008;101:239–253‏. doi:10.1093/toxsci/kfm240
  • Uskoković V. Dynamic light scattering based microelectrophoresis: main prospects and limitations. J Dispers Sci Technol. 2012;33:1762–1786. doi:10.1080/01932691.2011.625523
  • Shukla AK, Iravani S. Green Synthesis, Characterization and Applications of Nanoparticles. Amsterdam, The Netherland: Elsevier; 2019:523. doi:10.1016/C2017-0-02526-0
  • Zscherp C, Barth A. Reaction-induced infrared difference spectroscopy for the study of protein reaction mechanisms. Biochemistry. 2001;40:1875–1883‏. doi:10.1021/bi002567y
  • Faghihzadeh F, Anaya NM, Schifman LA, Oyanedel-Craver V. Fourier transform infrared spectroscopy to assess molecular-level changes in microorganisms exposed to nanoparticles. Nanotechnol Environ Eng. 2016;1:1. doi:10.1007/s41204-016-0001-8
  • Pathak Y, Thassu D. Drug Delivery Nanoparticles Formulation and Characterization. New York, USA: Informa Healthcare; 2009:416.
  • Gaba F, Tipping WJ, Salji M, Faulds K, Graham D, Leung HY. Raman spectroscopy in prostate cancer: techniques, applications, and advancements. Cancers. 2022;14:1535. doi:10.3390/cancers14061535
  • Kämpfe B, Luczak F, Michel B. Energy Dispersive X-Ray Diffraction. Part Syst Charact. 2005;22:391–396. doi:10.1002/ppsc.200501007
  • Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy Dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem. 2018;62:2841‏. doi:10.4081/ejh.2018.2841
  • Khanna P, Kaur A, Goyal DJ. Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Methods. 2019;163:105656. doi:10.1016/j.mimet.2019.105656
  • Ingham B. X-ray scattering characterization of nanoparticles. Crystallogr Rev. 2015;21:229–303. doi:10.1080/0889311X.2015.1024114
  • Khan I, Yamani ZH, Qurashi A. Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem. 2017;34:484–490. doi:10.1016/j.ultsonch.2016.06.025
  • Kaplan D. Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q, editors. Handbook of Microalgal Culture: Applied Phycology and Biotechnology. Second Edition, ed. Hoboken, New Jersey, USA: John Wiley & Sons, Ltd., Blackwell Publishing Ltd.; 2013:602–611. doi:10.1002/9781118567166.ch32
  • Bwapwa J, Jaiyeola A, Chetty R. Bioremediation of acid mine drainage using algae strains: a review. S Afr J Chem Eng. 2017;24:62–70. doi:10.1016/j.sajce.2017.06.005
  • Adityosulindro S, Wulandari D. Utilization of wild algae biomass as biosorbent for removal of heavy metal Zinc (Zn2+) from aqueous solution. Earth Environ Sci. 2021;824:012017. doi:10.1088/1755-1315/824/1/012017
  • Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ. A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci Nanotechnol. 2017;2017:8013850. doi:10.1155/2017/8013850
  • Morowvat MH, Kazemi K, Jaberi MA, Amini A, Gholami A. Biosynthesis and antimicrobial evaluation of zinc oxide nanoparticles using Chlorella vulgaris biomass against multidrug-resistant pathogens. Materials. 2023;16:842. doi:10.3390/ma16020842
  • Prasad R, Pandey R, Barman I. Engineering tailored nanoparticles with microbes: quo vadis?. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8:316–330. doi:10.1002/wnan.1363
  • Vijayan SR, Santhiyagu P, Singamuthu M, Kumari AN, Jayaraman R, Ethiraj K. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. Sci World J. 2014;2014:10. doi:10.1155/2014/938272
  • Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S. Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Chem. 2006;270:645–649. doi:10.1007/s10967-006-0475-0
  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation–a novel phenomenon. J Appl Phycol. 2009;21:145–152. doi:10.1007/s10811-008-9343-3
  • Shukla AK, Upadhyay AK, Singh L. Algae-mediated biological synthesis of nanoparticles: applications and prospects. In: Mandotra SK, Upadhyay AK, Ahluwalia AS, editors. Algae. Singapore: Springer; 2021:325–338. doi:10.1007/978-981-15-7518-1_14
  • Dahoumane SA, Yéprémian C, Djédiat C, et al. A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res. 2014;16:2607. doi:10.1007/s11051-014-2607-8
  • Namvar F, Azizi S, Ahmad MB, et al. Green synthesis and characterization of gold nanoparticles using the marine macroalgae Sargassum muticum. Res Chem Intermed. 2015;41:5723–5730. doi:10.1007/s11164-014-1696-4
  • Ismail MM, Alotaibi BS, El-Sheekh MM. Therapeutic uses of red macroalgae. Molecules. 2020;25:4411. doi:10.3390/molecules25194411
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96. doi:10.1263/jbb.101.87
  • Stablein MJ, Baracho DH, Watson JT, Silva JC, Zhang Y, Lombardi AT. Microalgal photosynthetic inhibition and mixotrophic growth in post hydrothermal liquefaction wastewater (PHW). Algal Res. 2021;60:102548. doi:10.1016/j.algal.2021.102548
  • Pugazhendhi A, Prabhu R, Muruganantham K, Shanmuganathan R, Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of Sargassum wightii. J Photochem Photobiol B Biol. 2019;190:86–97. doi:10.1016/j.jphotobiol.2018.11.014
  • Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab J Chem. 2017;10:S3029. doi:10.1016/j.arabjc.2013.11.044
  • Castro L, Blázquez ML, González F, Muñoz JÁ, Ballester A. Exploring the possibilities of biological fabrication of gold nanostructures using Orange peel extract. Metals. 2015;5:1609–1619. doi:10.3390/met5031609
  • Sharma B, Purkayastha DD, Hazra S, et al. Biosynthesis of fluorescent gold nanoparticles using an edible freshwater red alga, Lemanea fluviatilis (L.) C.Ag. and antioxidant activity of biomatrix loaded nanoparticles. Bioprocess Biosyst Eng. 2014;37:2559–2565. doi:10.1007/s00449-014-1233-2
  • Kumar P, Senthamilselvi S, Lakshmipraba A, et al. Efficacy of bio-synthesized silver nanoparticles using Acanthophora spicifera to encumber biofilm formation. Dig J Nanomater Biostruct. 2012;7:511–522.
  • Devi JS, Bhimba BV, Ratnam K. In vitro anticancer activity of silver nanoparticles synthesized using the extract of Gelidiella sp. Int J Pharm Sci. 2012;4:710–715.
  • Venkatesan J, Manivasagan P, Kim SK, Kirthi AV, Marimuthu S, Rahuman AA. Marine algae-mediated synthesis of gold nanoparticles using a novel Ecklonia cava. Bioprocess Biosyst Eng. 2014;37:1591–1597. doi:10.1007/s00449-014-1131-7
  • Prasad TN, Kambala VSR, Naidu R. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterization. J Appl Phycol. 2013;25:177–182. doi:10.1007/s10811-012-9851-z
  • Liu B, Xie J, Lee J, Ting Y, Chen JP. Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B. 2005;109:15256–15263. doi:10.1021/jp051449n
  • Madhiyazhagan P, Murugan K, Kumar AN, et al. Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res. 2015;114:4305–4317. doi:10.1007/s00436-015-4671-0
  • Rajeshkumar S, Malarkodi C, Gnanajobitha G, et al. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostructure Chem. 2013;3:44. doi:10.1186/2193-8865-3-44
  • Singh M, Kalaivani R, Manikandan S, Sangeetha N, Kumaraguru AK. Facile green synthesis of variable metallic gold nanoparticle using Padina gymnospora, a brown marine macroalga. Appl Nanosci. 2013;3:145–151. doi:10.1007/s13204-012-0115-7
  • El-Rafie H, El-Rafie M, Zahran M. Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohyd Polym. 2013;96:403–410. doi:10.1016/j.carbpol.2013.03.071
  • Parial D, Gopal PK, Paul S, Pal R. Gold (III) bioreduction by cyanobacteria with special reference to in vitro biosafety assay of gold nanoparticles. J Appl Phycol. 2016;28:3395–3406. doi:10.1007/s10811-016-0880-x
  • Focsan M, Ardelean I, Craciun C, Astilean S. Interplay between gold nanoparticle biosynthesis and metabolic activity of cyanobacterium Synechocystis sp. PCC 6803. Nanotechnology. 2011;22:485101. doi:10.1088/0957-4484/22/48/485101
  • Mosulishvili L, Kirkesali E, Belokobylsky A, et al. Experimental substantiation of the possibility of developing selenium-and iodine-containing pharmaceuticals based on blue–green algae Spirulina platensis. J Pharm Biomed. 2002;30:87–97. doi:10.1016/S0731-7085(02)00199-1
  • Ali A, Ali MA, Ali MU, Mohammad S. Hospital outcomes of obstetrical-related acute renal failure in a tertiary care teaching hospital. Ren Fail. 2011;33:285–290. doi:10.3109/0886022X.2011.560400
  • Doshi H, Ray A, Kothari I. Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng. 2007;96:1051–1063. doi:10.1002/bit.21190
  • Wei D, Qian W. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B. 2008;62:136–142. doi:10.1016/j.colsurfb.2007.09.030
  • Sinha SN, Paul D, Halder N, Sengupta D, Patra SK. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl Nanosci. 2015;5:703–709. doi:10.1007/s13204-014-0366-6
  • Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci. 2015;5:499–504. doi:10.1007/s13204-014-0341-2
  • Xie J, Lee JY, Wang DI, Ting YP. Identification of active biomolecules in the high‐yield synthesis of single‐crystalline gold nanoplates in algal solutions. Small. 2007;3:672–682. doi:10.1002/smll.200600612
  • Barwal I, Ranjan P, Kateriya S, Yadav SC. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnol. 2011;9:56. doi:10.1186/1477-3155-9-56
  • Shakibaie M, Forootanfar H, Mollazadeh‐Moghaddam K, et al. Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem. 2010;57:71–75. doi:10.1042/BA20100196
  • Nurmi JT, Tratnyek PG, Sarathy V, et al. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol. 2005;39:1221–1230. doi:10.1021/es049190u
  • Priyadharshini RI, Prasannaraj G, Geetha N, Venkatachalam P. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Appl Biochem Biotechnol. 2014;174:2777–2790. doi:10.1007/s12010-014-1225-3
  • Dhanalakshmi PK, Azeez R, Rekha R, Poonkodi S, Nallamuthu T. Synthesis of silver nanoparticles using green and brown seaweeds. Phykos. 2012;42:39–45.
  • Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R. Gold nanorod production by cyanobacteria—a green chemistry approach. J Appl Phycol. 2012b;24:55–60. doi:10.1007/s10811-010-9645-0
  • Kannan RRR, Stirk W, Van Staden J. Synthesis of silver nanoparticles using the seaweed Codium capitatum PC Silva (Chlorophyceae). S Afr J Bot. 2013b;86:1–4. doi:10.1016/j.sajb.2013.01.003
  • Kannan R, Arumugam R, Ramya D, Manivannan K, Anantharaman P. Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci. 2013a;3:229–233. doi:10.1007/s13204-012-0125-5
  • Marslin G, Siram K, Maqbool Q, et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials. 2018;11:940. doi:10.3390/ma11060940
  • Halder A, Das S, Bera T, Mukherjee A. Rapid synthesis for monodispersed gold nanoparticles in kaempferol and anti-leishmanial efficacy against wild and drug resistant strains. RSC Adv. 2017;7:14159–14167‏. doi:10.1039/C6RA28632A
  • Oza G, Pandey S, Mewada A, et al. Facile biosynthesis of gold nanoparticles exploiting optimum pH and temperature of freshwater algae Chlorella pyrenoidusa. Adv Appl Sci Res. 2012;3:1405–1412.
  • Parial D, Pal R. Biosynthesis of monodisperse gold nanoparticles by green alga Rhizoclonium and associated biochemical changes. J Appl Phycol. 2015;27:975–984. doi:10.1007/s10811-014-0355-x
  • Gardea-Torresdey J, Tiemann K, Dokken K, Pingitore N. Recovery of gold (III) by alfalfa biomass and binding characterization using X-ray microfluoresence. Adv Environ Res. 1999;U7–93.
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, et al. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B. 2009;74:328–335. doi:10.1016/j.colsurfb.2009.07.048
  • Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 2010;101:7958–7965. doi:10.1016/j.biortech.2010.05.051
  • Singh AK, Pal P, Gupta V, Yadav TP, Gupta V, Singh SP. Green synthesis, characterization and antimicrobial activity of zinc oxide quantum dots using Eclipta alba. Mater Chem Phys. 2018;203:40–48. doi:10.1016/j.matchemphys.2017.09.049
  • Darroudi M, Ahmad MB, Zamiri R, Zak AK, Abdullah AH, Ibrahim NA. Time-dependent effect in green synthesis of silver nanoparticles. Int J Nanomed. 2011;26:677. doi:10.2147/IJN.S17669
  • Kuchibhatla SV, Karakoti AS, Baer DR, et al. Influence of aging and environment on nanoparticle chemistry: implication to confinement effects in nanoceria. J Phys Chem. 2012;116:14108–14114. doi:10.1021/jp300725s
  • Mudunkotuwa IA, Pettibone JM, Grassian VH. Environmental implications of nanoparticle aging in the processing and fate of copper-based nanomaterials. Environ Sci Technol. 2012;46:7001–7010. doi:10.1021/es203851d
  • Baer DR. Surface characterization of nanoparticles: critical needs and significant challenges. J Surf Anal. 2011;17:163–169. doi:10.1384/jsa.17.163
  • Sahayaraj K, Rajesh S, Rathi JM. Silver nanoparticles biosynthesis using marine alga Padina pavonica (LINN.) and its microbicidal activity. Dig J Nanomater Bios. 2012;7:1557–1567.
  • Chia SR, Ong HC, Chew KW, et al. Sustainable approaches for algae utilization in bioenergy production. Renew Energy. 2018;129:838–852. doi:10.1016/j.renene.2017.04.00
  • Wang K, Khoo KS, Chew KW, et al. Microalgae: the future supply house of biohydrogen and biogas. Front Energy Res. 2021;9:660399. doi:10.3389/fenrg.2021.660399
  • Xie Y, Khoo KS, Chew KW, et al. Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresour Technol. 2022;363:127830‏. doi:10.1016/j.biortech.2022.127830
  • Kumar SS, Kumar Y, Khan MSY, Anbu J, De Clercq E. Antihistaminic and antiviral activities of steroids of Turbinaria conoides. Nat Prod Res. 2011;25:723–729. doi:10.1080/14786411003781515
  • Ghodake G, Lee DS. Biological synthesis of gold nanoparticles using the aqueous extract of the brown algae Laminaria japonica. J Nanoelectron Optoelectron. 2011;6:268–271. doi:10.1166/jno.2011.1166
  • Rajeshkumar S, Kannan C, Annadurai G. Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int J Pharma Bio Sci. 2012;3:502–510.
  • Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014;116:275–277. doi:10.1016/j.matlet.2013.11.038
  • Maneerung T, Tokura S, Rujiravanit R. Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym. 2008;72:43–51. doi:10.1016/j.carbpol.2007.07.025
  • Vidyanathan R, Llishwaralal K, Gopalram S, Gurunathan S. Nanosilver-the burgeoning therapeutic molecule and its green synthesis. Biotechnol Adv. 2009;27:924–937. doi:10.1016/j.biotechadv.2009.08.001
  • Abo-Neima SE, Ahmed AA, El-Sheekh M, Makhlof MEM. Polycladia myrica-based delivery of selenium nanoparticles in combination with radiotherapy induces potent in vitro antiviral and in vivo anticancer activities against Ehrlich ascites tumor. Front Mol Biosci. 2023;10:1120422. doi:10.3389/fmolb.2023.1120422
  • Abboud Y, Saffaj T, Chagraoui A, et al. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci. 2014;4:571–576. doi:10.1007/s13204-013-0233-x
  • El-Sheekh MM, El-Kassas HY, Shams El-Din NG, Eissa DI, El-Sherbiny BA. Green synthesis, characterization applications of iron oxide nanoparticles for antialgal and wastewater bioremediation using three brown algae. Int J Phytoremediation. 2021;23:1538–1552. doi:10.1080/15226514.2021.1915957
  • Elrefaey AAK, El-Gamal AD, Hamed SM, El-belely EF. Algae-mediated biosynthesis of zinc oxide nanoparticles from Cystoseira crinite (Fucales; Sargassaceae) and it’s antimicrobial and antioxidant activities. Egypt J Chem. 2022;65:231–240. doi:10.21608/EJCHEM.2021.87722.4231
  • Touliabah H, EL-Sheekh MM, Makhlof MEM. Evaluation of Polycladia myrica mediated selenium nanoparticles (CsSeNPs) cytotoxicity against PC-3 cells and antiviral activity against HAV HM175 (Hepatitis A), HSV-2 (Herpes simplex II) and Adenovirus strain 2. Front Mar Sci. 2022;9:1092343. doi:10.3389/fmars.2022.1092343
  • Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem. 2014;7:1131–1139. doi:10.1016/j.arabjc.2013.04.007
  • Kumar-Krishnan S, Prokhorov E, Hernández-Iturriaga M, et al. Chitosan/silver nanocomposites: synergistic antibacterial action of silver nanoparticles and silver ions. Eur Polym J. 2015;6:242–251. doi:10.1016/j.eurpolymj.2015.03.066
  • Kushnerova NF, Fomenko SE, Sprygin VG, et al. An extract from the brown alga Laminaria japonica: a promising stress-protective preparation. Russ J Mar Biol. 2010;36:209–214. doi:10.1134/S1063074010030077
  • Khodashenas B, Ghorbani HR. Synthesis of silver nanoparticles with different shapes. Arab J Chem. 2019;12:1823–1838. doi:10.1016/j.arabjc.2014.12.014
  • Sirelkhatim A, Mahmud S, Seeni A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett. 2015;7:219–242. doi:10.1007/s40820-015-0040-x
  • Azizi S, Shahri MM, Mohamad R. Green synthesis of zinc oxide nanoparticles for enhanced adsorption of lead ions from aqueous solutions: equilibrium, kinetic and thermodynamic studies. Molecules. 2017;22:831. doi:10.3390/molecules22060831
  • Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D. Defining the major lineages of red algae (Rhodophyta). J Phycol. 2006;42:482–492. doi:10.1111/j.1529-8817.2006.00210.x
  • Rao PS, Mantri VA, Ganesan K. Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem. 2007;102:215–218. doi:10.1016/j.foodchem.2006.05.009
  • Venkatpurwar V, Pokharkar V. Green synthesis of silver nanoparticles using marine polysaccharide: study of in vitro antibacterial activity. Mater Lett. 2011;65:999–1002. doi:10.1016/j.matlet.2010.12.057
  • Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog. 2018;114:41–45. doi:10.1016/j.micpath.2017.11.013
  • Vadlapudi V, Amanchy R. Synthesis, characterization, and antibacterial activity of silver nanoparticles from red algae, Hypnea musciformis. Adv Biol Res. 2017;11:242–249. doi:10.5829/idosi.abr.2017.242.249
  • Kumar P, Govindaraju M, Senthamilselvi S, Premkumar K. Photocatalytic degradation of methyl Orange dye using silver (Ag) nanoparticles synthesized from Ulva lactuca. Colloids Surf B. 2013b;103:658–661. doi:10.1016/j.colsurfb.2012.11.022
  • Barciela P, Carpena M, Li N-Y, et al. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Adv Colloid Interface Sci. 2023;311:102829. doi:10.1016/j.cis.2022.102829
  • Singh CR, Kathiresan K, Anandhan S. A review on marine based nanoparticles and their potential applications. Afr J Biotechnol. 2015;14:1525–1532. doi:10.5897/AJB2015.14527
  • Murugesan S, Bhuvaneswari S, Sivamurugan V. Green synthesis, characterization of silver nanoparticles of a marine red alga Spyridia fusiformis and their antibacterial activity. Int J Pharm Pharm Sci. 2017;9:192–197. doi:10.22159/ijpps.2017v9i5.17105
  • Al-Naamani L, Dobretsov S, Dutta J, Burgess JG. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling. Chemosphere. 2017;168:408–417. doi:10.1016/j.chemosphere.2016.10.033
  • Mosulishvili LM, Belokobylsky AI, Kirkesali EI, Frontasyeva MV, Pavlov SS, Aksenova NG. Neutron activation analysis for studying Cr uptake in the blue-green microalga Spirulina platensis. J Neutron Res. 2007;5:49–54. doi:10.1080/10238160601025138
  • Khan AU, Khan M, Malik N, Cho MH, Khan MM. Recent progress of algae and blue–green algae-assisted synthesis of gold nanoparticles for various applications. Bioprocess Biosyst Eng. 2019;42:1–15. doi:10.1007/s00449-018-2012-2
  • Suganya KU, Govindaraju K, Kumar VG, et al. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C. 2015;47:351–356. doi:10.1016/j.msec.2014.11.043
  • Parial D, Patra HK, Dasgupta AK, Pal R. Screening of different algae for green synthesis of gold nanoparticles. Eur J Phycol. 2012a;47:22–29. doi:10.1080/09670262.2011.653406
  • Rösken LM, Cappel F, Körsten S, et al. Time-dependent growth of crystalline Au(0)-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica. Beilstein J Nanotechnol. 2016;7:312–327. doi:10.3762/bjnano.7.30
  • Hanna AL, Hamouda HM, Goda HA, et al. Biosynthesis and characterization of silver nanoparticles produced by Phormidium ambiguum and Desertifilum tharense cyanobacteria. Bioinorg Chem Appl. 2022;2022:9072508. doi:10.1155/2022/9072508
  • Sudha SS, Rajamanickam K, Rengaramanujam J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol. 2013;51:393–399.
  • Husain S, Afreen S, Yasin D, Afzal B, Fatma T. Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. J Microbiol Methods. 2019;162:77–82. doi:10.1016/j.mimet.2019.05.011
  • Husain S, Sardar M, Fatma T. Screening of cyanobacterial extracts for synthesis of silver nanoparticles. World J Microbiol Biotechnol. 2015;31:1279–1283. doi:10.1007/s11274-015-1869-3
  • Mahdieh M, Zolanvari A, Azimee AJS. Green biosynthesis of silver nanoparticles by Spirulina platensis. Scientia Iranica. 2012;19:926–929. doi:10.1016/j.scient.2012.01.010
  • Banerjee S, Bhattacharya A, Roychoudhury P, Dasgupta AK, Dutta M, Pal R. Arthrospira platensis (Cyanobacteria) – a potential biofactory for fluoromagnetic nanoiron production. Phycologia. 2021;60:62–72. doi:10.1080/00318884.2020.1851010
  • MubarakAli D, Gopinath V, Rameshbabu N, Thajuddin N. Synthesis and characterization of CdS nanoparticles using C-phycoerythrin from the marine cyanobacteria. Mater Lett. 2012;74:8–11. doi:10.1016/j.matlet.2012.01.026
  • Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir. 2007;23:2694–2699. doi:10.1021/la0613124
  • Bishoyi AK, Sahoo CR, Sahoo AP, Padhy RN. Bio-synthesis of silver nanoparticles with the brackish water blue-green alga Oscillatoria princeps and antibacterial assessment. Appl Nanosci. 2021;11:389–398. doi:10.1007/s13204-020-01593-7
  • Che X, Ding R, Zhang Q, et al. The severe toxicity of CuO nanoparticles to the photosynthesis of the prokaryotic algae Arthrospira sp. Environ Sci Pollut Res. 2021;28:54105–54116. doi:10.1007/s11356-021-14341-3
  • Thota S, Crans DC. Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences. John Wiley & Sons New Jersey. USA; 2018:261.
  • Sosa IO, Noguez C, Barrera RG. Optical properties of metal nanoparticles with arbitrary shapes. J Phys Chem B. 2003;107:6269–6275. doi:10.1021/jp0274076
  • Yousefzadi M, Rahimi Z, Ghafori V. The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga Enteromorpha flexuosa (wulfen). J Agardh Mate Lett. 2014;137:1–4. doi:10.1016/j.matlet.2014.08.110
  • Jena J, Pradhan N, Nayak RR, et al. Microalga Scenedesmus sp. A potential low-cost green machine for silver nanoparticle synthesis. J Microbiol Biotechnol. 2014;24:522–533. doi:10.4014/jmb.1306.06014
  • Beganskienė A, Sirutkaitis V, Kurtinaitienė M, Juškėnas R, Kareiva A. FTIR, TEM and NMR investigations of Stöber silica nanoparticles. Mater Sci. 2004;10:287–290. doi:10.5755/j01.ms.10.4.26643
  • Arya AK, Gupta K, Chundawat TS, Vaya D. Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl. 2018;7879403. doi:10.1155/2018/7879403
  • Mishra V, Arya A, Chundawat TS. High catalytic activity of Pd nanoparticles synthesized from green alga Chlorella vulgaris in Buchwald-Hartwig synthesis of N-aryl piperazines. Curr Organo. 2020;7:23–33. doi:10.2174/2213337206666190515091945
  • Rao MD, Pennathur G. Green synthesis and characterization of cadmium sulphide nanoparticles from Chlamydomonas reinhardtii and their application as photocatalysts. Mater Res Bull. 2017;85:64–73. doi:10.1016/j.materresbull.2016.08.049
  • Roychoudhury P, Pal R. Spirogyra submaxima—a green alga for nanogold production. J Algal Biomass Utln. 2014;5:15–19.
  • Xu L, Zhao Z, Yan Z, et al. Defense pathways of Chlamydomonas reinhardtii under silver nanoparticle stress: extracellular biosorption, internalization and antioxidant genes. Chemosphere. 2022;291:132764. doi:10.1016/j.chemosphere.2021.132764
  • Mahana A, Mehta SK. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. Environ Sci Pollut Res. 2021;2822:28234–28250. doi:10.1007/s11356-021-12682-7
  • Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent progress on nanostructures for drug delivery applications. Nanomater. 2016;2016:5762431. doi:10.1155/2016/5762431
  • Zhang S, Qamar SA, Junaid M, Munir B, Badar Q, Bilal M. Algal polysaccharides‐based nanoparticles for targeted drug delivery applications. Starch‐Stärke. 2022;74:2200014. doi:10.1002/star.202200014
  • Choi YH, Han HK. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. J Pharm Invest. 2018;48:43–60. doi:10.1007/s40005-017-0370-4
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16:71. doi:10.1186/s12951-018-0392-8
  • Yan N, Fan C, Chen Y, Hu Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci. 2016;17:962‏. doi:10.3390/ijms17060962
  • Khavari F, Saidijam M, Taheri M, Nouri F. Microalgae: therapeutic potentials and applications. Mol Biol Rep. 2021;48:4757–4765. doi:10.1007/s11033-021-06422-w
  • Michael A, Singh A, Roy A, Islam MR. Fungal-and algal-derived synthesis of various nanoparticles and their applications. Bioinorg Chem Appl. 2022;2022:3142674. doi:10.1155/2022/3142674
  • Kalimuthu K, Lubin BC, Bazylevich A, et al. Gold nanoparticles stabilize peptide-drug-conjugates for sustained targeted drug delivery to cancer cells. J Nanobiotechnology. 2018;16:34. doi:10.1186/s12951-018-0362-1
  • El-Sheekh MM, Nassef M, Bases E, El Shafay S, El-shenody R. Antitumor immunity and therapeutic properties of marine seaweeds-derived extracts in the treatment of cancer. Cancer Cell Int. 2022;22:267. doi:10.1186/s12935-022-02683-y
  • Paciotti GF, Kingston DGI, Tamarkin L. Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res. 2006;67:47–54. doi:10.1002/ddr.20066
  • Paciotti GF, Myer L, Weinreich D, et al. Colloidal gold: a novel nanoparticle vector for tumor directed drug delivery. Drug Deliv. 2004;11:169–183. doi:10.1080/10717540490433895
  • Gupta AK, Gupta M. Synthesis, and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012
  • Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deli Rev. 2011;63:24–46‏. doi:10.1016/j.addr.2010.05.006
  • Uzair B, Liaqat A, Iqbal H, et al. Green and cost-effective synthesis of metallic nanoparticles by algae: safe methods for translational medicine. Bioengineering. 2020;7:129‏. doi:10.3390/bioengineering7040129
  • Lo JH, von Maltzahn G, Douglass J, et al. Nanoparticle amplification via photothermal unveiling of cryptic collagen binding sites. J Mater Chem. 2013;20:1630–1635. doi:10.1039/C3TB20619J
  • Manivasagan P, Kim SK. Biosynthesis of nanoparticles using marine algae: a review. In: Marine Algae Extracts: Processes, Products, and Applications; 2015:295–304. doi:10.1002/9783527679577.ch17
  • Bhattacharya P, Swarnakar S, Ghosh S, Majumdar S, Banerjee S. Disinfection of drinking water via algae mediated green synthesized copper oxide nanoparticles and its toxicity evaluation. J Environ Chem Eng. 2019;7:102867. doi:10.1016/j.jece.2018.102867
  • Cortese B, D’Amone S, Testini M, Ratano P, Palamà IE. Hybrid clustered nanoparticles for chemo-antibacterial combinatorial cancer therapy. Cancers. 2019;11:1338‏. doi:10.3390/cancers11091338
  • Al-Dulimi AG, Al-Saffar AZ, Sulaiman GM, et al. Immobilization of L-asparaginase on gold nanoparticles for novel drug delivery approach as anti-cancer agent against human breast carcinoma cells. J Mater Res Technol. 2020;9:15394–15411‏. doi:10.1016/j.jmrt.2020.10.021
  • Ramaswamy SVP, Narendhran S, Sivaraj R. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull Mater Sci. 2016;39:361–364. doi:10.1007/s12034-016-1173-3
  • González-Ballesteros N, Prado-López S, Rodríguez-González J, Lastra M, Rodríguez-Argüelles M. Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B. 2017;153:190–198. doi:10.1016/j.colsurfb.2017.02.020
  • Sonbol H, Ameen F, Alyahya S, Almansob A, Alwakeel S. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells. Sci Rep. 2021;11:5444. doi:10.1038/s41598-021-84794-6
  • Babu B, Palanisamy S, Vinosha M, et al. Bioengineered gold nanoparticles from marine seaweed Acanthophora spicifera for pharmaceutical uses: antioxidant, antibacterial, and anticancer activities. Bioprocess Biosyst Eng. 2020;43:2231–2242. doi:10.1007/s00449-020-02408-3
  • Sathiyaraj G, Vinosha M, Sangeetha D, et al. Bio-directed synthesis of Pt-nanoparticles from aqueous extract of red algae Halymenia dilatata and their biomedical applications. Colloids Surf A Physicochem Eng Asp. 2021;618:126434. doi:10.1016/j.colsurfa.2021.126434
  • Gopu M, Kumar P, Selvankumar T, et al. Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess Biosyst Eng. 2021;44:217–223. doi:10.1007/s00449-020-02426-1
  • Sathishkumar R, Sundaramanickam A, Srinath R, et al. Green synthesis of silver nanoparticles by bloom forming marine microalgae Trichodesmium erythraeum and its applications in antioxidant, drug-resistant bacteria, and cytotoxicity activity. J Saudi Chem Soc. 2019;23:1180–1191. doi:10.1016/j.jscs.2019.07.008
  • Elgamouz A, Idriss H, Nassab C, et al. Green synthesis, characterization, antimicrobial, anti-cancer, and optimization of colorimetric sensing of hydrogen peroxide of algae extract capped silver nanoparticles. Nanomaterials. 2020;10:1861. doi:10.3390/nano10091861
  • Singh AK, Tiwari R, Singh V, Singh P, Khadim S, Singh U. Green synthesis of gold nanoparticles from Dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line. J Drug Deliv Sci Technol. 2019;51:164–176. doi:10.1016/j.jddst.2019.02.023
  • Amina SJ, Iqbal M, Faisal A, et al. Synthesis of diosgenin conjugated gold nanoparticles using algal extract of Dictyosphaerium sp. and in vitro application of their antiproliferative activities. Mater Today Commun. 2021;27:102360. doi:10.1016/j.mtcomm.2021.102360
  • Ebrahiminezhad A, Bagheri M, Taghizadeh S-M, Berenjian A, Ghasemi Y. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci. 2016;7:015018. doi:10.1088/2043-6262/7/1/015018
  • Boca SC, Potara M, Gabudean A-M, Juhem A, Baldeck PL, Astilean S. Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Lett. 2011;311:131–140. doi:10.1016/j.canlet.2011.06.022
  • Khatik N. Green synthesis of nanomaterials and their utilization as potential vehicles for targeted cancer drug delivery. Nanomedicine. 2022;19:21. doi:10.13189/app.2022.100205
  • Sun B, Hu N, Han L, Pi Y, Gao Y, Chen K. Anticancer activity of green synthesized gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif Cells Nanomed Biotechnol. 2019;47:4012–4019. doi:10.1080/21691401.2019.1575844
  • Geetha R, Ashokkumar T, Tamilselvan S, Govindaraju K, Sadiq M, Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013;4:91–98. doi:10.1007/s12645-013-0040-9
  • Baskar G, Garrick B, Lalitha K, Chamundeeswari M. Gold nanoparticle mediated delivery of fungal asparaginase against cancer cells. J Drug Deliv Sci Technol. 2018;44:498–504. doi:10.1016/j.jddst.2018.02.007
  • Naveena BE, Prakash S. Biological synthesis of gold nanoparticles using marine algae Gracilaria corticata and its application as a potent antimicrobial and antioxidant agent. Asian J Pharm Clin Res. 2013;6:179–182.
  • Ogi T, Saitoh N, Nomura T, Konishi Y. Room-temperature synthesis of gold nanoparticles and nanoplates using Shewanella algae cell extract. J Nanopart Res. 2010;12:2531–2539. doi:10.1007/s11051-009-9822-8
  • Santhosh PB, Genova J, Chamati H. Green synthesis of gold nanoparticles: an eco-friendly approach. Chemistry. 2022;4:345–369. doi:10.3390/chemistry4020026
  • Rezaeian A, Amini SM, Najafabadi MRH, Farsangi ZJ, Samadian H. Plasmonic hyperthermia or radiofrequency electric field hyperthermia of cancerous cells through green-synthesized curcumin-coated gold nanoparticles. Lasers Med Sci. 2022;37:1333–1341. doi:10.1007/s10103-021-03399-7
  • Fatima H, Charinpanitkul T, Kim KS. Fundamentals to apply magnetic nanoparticles for hyperthermia therapy. Nanomaterials. 2021;11:1203‏. doi:10.3390/nano11051203
  • Algotiml R, Gab-Alla A, Seoudi R, Abulreesh HH, El-Readi MZ, Elbanna K. Anticancer and antimicrobial activity of biosynthesized Red Sea marine algal silver nanoparticles. Sci Rep. 2022;12:2421. doi:10.1038/s41598-022-06412-3
  • Viswanathan S, Palaniyandi T, Shanmugam R, et al. Synthesis, characterization, cytotoxicity, and antimicrobial studies of green synthesized silver nanoparticles using red seaweed Champia parvula. Biomass Conv Bioref. 2023. doi:10.1007/s13399-023-03775-z
  • Patil MP, Kim GD. Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol. 2017;101:79–92. doi:10.1007/s00253-016-8012-8
  • Veeramani S, Ravindran E, Ramadoss P, Joseph C, Shanmugam K, Renganathan S. Silver nanoparticles green synthesis with Aq. extract of stems Ipomoea pes-caprae, characterization, antimicrobial and anti-cancer potential. Int J Med Nano Res. 2018;5:024. doi:10.23937/2378-3664.1410024
  • Ratan ZA, Haidere MF, Nurunnabi M, et al. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers. 2020;12:855. doi:10.3390/cancers12040855
  • Jain N, Jain P, Rajput D, Patil UK. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst Lett. 2021;9:5. doi:10.1186/s40486-021-00131-6
  • Orhan H, Aktaş Uygun D. Immobilization of L-asparaginase on magnetic nanoparticles for cancer treatment. Appl Biochem Biotechnol. 2020;191:1432–1443‏. doi:10.1007/s12010-020-03276-z
  • Kamaruzaman NH, Noor NNM, Mohamed R, et al. Applicability of bio-synthesized nanoparticles in fungal secondary metabolites products and plant extracts for eliminating antibiotic-resistant bacteria risks in non-clinical environments. Environ Res. 2022;209:112831. doi:10.1016/j.envres.2022.112831
  • Ismail AM, Menazea AA, Kabary HA, El-Sherbiny AE, Samy A. The influence of calcination temperature on structural and antimicrobial characteristics of zinc oxide nanoparticles synthesized by Sol–Gel method. J Mol Struct. 2019;1196:332–337. doi:10.1016/j.molstruc.2019.06.084
  • Govindasamy R, Gayathiri E, Sankar S, et al. Emerging trends of nanotechnology and genetic engineering in cyanobacteria to optimize production for future applications. Life. 2022;12:2013. doi:10.3390/life12122013
  • El-Sheekh MM, El-Kasas H. Algal production of nano-silver and gold: their antimicrobial and cytotoxic activities: a review. J Genet Eng Biotechnol. 2016;14:299–310. doi:10.1016/j.jgeb.2016.09.008