466
Views
7
CrossRef citations to date
0
Altmetric
REVIEW

Nanotechnology-Boosted Biomaterials for Osteoarthritis Treatment: Current Status and Future Perspectives

, & ORCID Icon
Pages 4969-4983 | Received 31 May 2023, Accepted 14 Aug 2023, Published online: 04 Sep 2023

References

  • Glyn-Jones S, Palmer AJ, Agricola R, et al. Osteoarthritis. Lancet. 2015;386(9991):376–387. doi:10.1016/S0140-6736(14)60802-3
  • Martel-Pelletier J, Barr AJ, Cicuttini FM, et al. Osteoarthritis. Nat Rev Dis Primers. 2016;2:16072. doi:10.1038/nrdp.2016.72
  • Wei Y, Luo L, Gui T, et al. Targeting cartilage EGFR pathway for osteoarthritis treatment. Sci Transl Med. 2021;13(576). doi:10.1126/scitranslmed.abb3946
  • Zhao Y, Song S, Wang D, et al. Nanozyme-reinforced hydrogel as a H(2)O(2)-driven oxygenerator for enhancing prosthetic interface osseointegration in rheumatoid arthritis therapy. Nat Commun. 2022;13(1):6758. doi:10.1038/s41467-022-34481-5
  • Zhen G, Wen C, Jia X, et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med. 2013;19(6):704–712. doi:10.1038/nm.3143
  • Jiang Y. Osteoarthritis year in review 2021: biology. Osteoarthritis Cartilage. 2022;30(2):207–215. doi:10.1016/j.joca.2021.11.009
  • Zhang X, Chen X, Zhao Y. Nanozymes: versatile Platforms for Cancer Diagnosis and Therapy. Nanomicro Lett. 2022;14(1):95. doi:10.1007/s40820-022-00828-2
  • Zhang X, Chen X, Song J, Zhang J, Ren X, Zhao Y. Size-Transformable nanostructures: from design to biomedical applications. Adv Mater. 2020;32(48):e2003752. doi:10.1002/adma.202003752
  • Li M, Luo Z, Zhao Y. Hybrid nanoparticles as drug carriers for controlled chemotherapy of cancer. Chem Rec. 2016;16(4):1833–1851. doi:10.1002/tcr.201600029
  • Liang S, Yao J, Liu D, Rao L, Chen X, Wang Z. Harnessing Nanomaterials for Cancer Sonodynamic Immunotherapy. Adv Mater. 2023;35. doi:10.1002/adma.202211130:e2211130
  • Yang K, Yang Z, Yu G, Nie Z, Wang R, Chen X. Polyprodrug nanomedicines: an emerging paradigm for cancer therapy. Adv Mater. 2022;34(6):e2107434. doi:10.1002/adma.202107434
  • Kunz-Schughart LA, Dubrovska A, Peitzsch C, et al. Nanoparticles for radiooncology: mission, vision, challenges. Biomaterials. 2017;120:155–184. doi:10.1016/j.biomaterials.2016.12.010
  • Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci. 2019;7(7):2652–2674. doi:10.1039/C9BM00423H
  • Piktel E, Niemirowicz K, Watek M, Wollny T, Deptula P, Bucki R. Recent insights in nanotechnology-boosted drugs and formulations designed for effective anti-cancer therapy. J Nanobiotechnology. 2016;14(1):39. doi:10.1186/s12951-016-0193-x
  • Qian W-M, Vahid MH, Sun Y-L, et al. Investigation on the effect of functionalization of single-walled carbon nanotubes on the mechanical properties of epoxy glass composites: experimental and molecular dynamics simulation. J Materials Res Technol. 2021;12:1931–1945. doi:10.1016/j.jmrt.2021.03.104
  • Maghsoudlou MA, Nassireslami E, Saber-Samandari S, Khandan A. Bone regeneration using bio-nanocomposite tissue reinforced with bioactive nanoparticles for femoral defect applications in medicine. Avicenna J Med Biotechnol. 2020;12(2):68–76.
  • Abdellahi M, Karamian E, Najafinezhad A, Ranjabar F, Chami A, Khandan A. Diopside-magnetite; A novel nanocomposite for hyperthermia applications. J Mech Behav Biomed Mater. 2018;77:534–538. doi:10.1016/j.jmbbm.2017.10.015
  • Cheng H, Chawla A, Yang Y, et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today. 2017;22(9):1336–1350. doi:10.1016/j.drudis.2017.04.021
  • Nga NK, Thuy Chau NT, Viet PH. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering. Colloids Surf B Biointerfaces. 2018;172:769–778. doi:10.1016/j.colsurfb.2018.09.039
  • Chintapula U, Chikate T, Sahoo D, et al. Immunomodulation in age-related disorders and nanotechnology interventions. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2023;15(1):e1840. doi:10.1002/wnan.1840
  • Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater. 2012;24(12):1504–1534. doi:10.1002/adma.201104763
  • Maturavongsadit P, Luckanagul JA, Metavarayuth K, et al. Promotion of In vitro chondrogenesis of mesenchymal stem cells using in situ hyaluronic hydrogel functionalized with rod-like viral nanoparticles. Biomacromolecules. 2016;17(6):1930–1938. doi:10.1021/acs.biomac.5b01577
  • Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev. 2018;47(17):6486–6504. doi:10.1039/C8CS00187A
  • Tang B, Xia W, Cai W, Liu J. Luminescent gold nanoparticles with controllable hydrophobic interactions. Nano Lett. 2022;22(20):8109–8114. doi:10.1021/acs.nanolett.2c02486
  • Jebari-Benslaiman S, Uribe KB, Benito-Vicente A, et al. Boosting Cholesterol Efflux from Foam Cells by Sequential Administration of rHDL to Deliver MicroRNA and to Remove Cholesterol in a Triple-Cell 2D Atherosclerosis Model. Small. 2022;18(13):e2105915. doi:10.1002/smll.202105915
  • Kang LJ, Yoon J, Rho JG, et al. Self-assembled hyaluronic acid nanoparticles for osteoarthritis treatment. Biomaterials. 2021;275:120967. doi:10.1016/j.biomaterials.2021.120967
  • Wang Y, Zhang P, Wei Y, et al. Cell-Membrane-Display Nanotechnology. Adv Healthc Mater. 2021;10(1):e2001014. doi:10.1002/adhm.202001014
  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi:10.1016/j.addr.2013.11.009
  • Wang Y, Zhang K, Li T, et al. Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications. Theranostics. 2021;11(1):164–180. doi:10.7150/thno.47841
  • Shen C, Gao M, Chen H, et al. Reactive oxygen species (ROS)-responsive nanoprobe for bioimaging and targeting therapy of osteoarthritis. J Nanobiotechnology. 2021;19(1):395. doi:10.1186/s12951-021-01136-4
  • Andreo J, Ettlinger R, Zaremba O, et al. Reticular nanoscience: bottom-up assembly nanotechnology. J Am Chem Soc. 2022;144(17):7531–7550. doi:10.1021/jacs.1c11507
  • Fang RH, Kroll AV, Gao W, Zhang L. Cell membrane coating nanotechnology. Adv Mater. 2018;30(23):e1706759. doi:10.1002/adma.201706759
  • Hu Y, Grosche M, Sheshachala S, et al. Bottom-Up Assembly of DNA-Silica Nanocomposites into Micrometer-Sized Hollow Spheres. Angew Chem Int Ed Engl. 2019;58(48):17269–17272. doi:10.1002/anie.201910606
  • Wang Z, Blaszczyk A, Fuhr O, Heissler S, Woll C, Mayor M. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat Commun. 2017;8:14442. doi:10.1038/ncomms14442
  • Gopfrich K, Platzman I, Spatz JP. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends Biotechnol. 2018;36(9):938–951. doi:10.1016/j.tibtech.2018.03.008
  • Chen G, Levin R, Landau S, et al. Implanted synthetic cells trigger tissue angiogenesis through de novo production of recombinant growth factors. Proc Natl Acad Sci U S A. 2022;119(38):e2207525119. doi:10.1073/pnas.2207525119
  • Stanev TK, Liu P, Zeng H, et al. Direct patterning of optoelectronic nanostructures using encapsulated layered transition metal dichalcogenides. ACS Appl Mater Interfaces. 2022;14(20):23775–23784. doi:10.1021/acsami.2c03652
  • Fang RH, Hu CM, Luk BT, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 2014;14(4):2181–2188. doi:10.1021/nl500618u
  • Bishop KJM. Self-assembly across scales. Nat Mater. 2022;21(5):501–502. doi:10.1038/s41563-022-01235-z
  • Wang Y, Mirkin CA, Park SJ. Nanofabrication beyond electronics. ACS Nano. 2009;3(5):1049–1056. doi:10.1021/nn900448g
  • Zhang G, Surwade SP, Zhou F, Liu H. DNA nanostructure meets nanofabrication. Chem Soc Rev. 2013;42(7):2488–2496. doi:10.1039/C2CS35302D
  • Zhao H, Cheng X, Wu C, et al. Mechanically Guided Hierarchical Assembly of 3D Mesostructures. Adv Mater. 2022;34(12):e2109416. doi:10.1002/adma.202109416
  • Nie W, Wu G, Zhang J, et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew Chem Int Ed Engl. 2020;59(5):2018–2022. doi:10.1002/anie.201912524
  • Hu Q, Li H, Wang L, Gu H, Fan C. DNA nanotechnology-enabled drug delivery systems. Chem Rev. 2019;119(10):6459–6506. doi:10.1021/acs.chemrev.7b00663
  • Farokhi M, Mottaghitalab F, Reis RL, Ramakrishna S, Kundu SC. Functionalized silk fibroin nanofibers as drug carriers: advantages and challenges. J Control Release. 2020;321:324–347. doi:10.1016/j.jconrel.2020.02.022
  • Correa S, Boehnke N, Barberio AE, et al. Tuning nanoparticle interactions with ovarian cancer through layer-by-layer modification of surface chemistry. ACS Nano. 2020;14(2):2224–2237. doi:10.1021/acsnano.9b09213
  • Zhao Z, Hou T, Wu N, et al. Polycrystalline few-layer graphene as a durable anticorrosion film for copper. Nano Lett. 2021;21(2):1161–1168. doi:10.1021/acs.nanolett.0c04724
  • Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology. 2018;16(1):71. doi:10.1186/s12951-018-0392-8
  • Garbayo E, Pascual-Gil S, Rodriguez-Nogales C, Saludas L, Estella-Hermoso De Mendoza A, Blanco-Prieto MJ. Nanomedicine and drug delivery systems in cancer and regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020;12(5):e1637. doi:10.1002/wnan.1637
  • Onugwu AL, Nwagwu CS, Onugwu OS, et al. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release. 2023;354:465–488. doi:10.1016/j.jconrel.2023.01.018
  • Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology. 2019;17(1):82. doi:10.1186/s12951-019-0514-y
  • Zhong Y, Zhou Y, Ding R, et al. Intra-articular treatment of temporomandibular joint osteoarthritis by injecting actively-loaded meloxicam liposomes with dual-functions of anti-inflammation and lubrication. Mater Today Bio. 2023;19:100573. doi:10.1016/j.mtbio.2023.100573
  • Pontes AP, Welting TJM, Rip J, Creemers LB. Polymeric nanoparticles for drug delivery in osteoarthritis. Pharmaceutics. 2022;14(12):2639. doi:10.3390/pharmaceutics14122639
  • Bruno MC, Cristiano MC, Celia C, et al. Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano. 2022;16(12):19665–19690. doi:10.1021/acsnano.2c06393
  • Lin X, Tsao CT, Kyomoto M, Zhang M. Injectable Natural Polymer Hydrogels for Treatment of Knee Osteoarthritis. Adv Healthc Mater. 2022;11(9):e2101479. doi:10.1002/adhm.202101479
  • Soleimani M, Asgharzadeh Salmasi A, Asghari S, et al. Optimization and fabrication of alginate scaffold for alveolar bone regeneration with sufficient drug release. Int Nano Lett. 2021;11(3):295–305. doi:10.1007/s40089-021-00342-0
  • Angili SN, Morovvati MR, Kardan-Halvaei M, et al. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration. Int J Biol Macromol. 2023;224:1152–1165. doi:10.1016/j.ijbiomac.2022.10.200
  • Zhao T, Wei Z, Zhu W, Weng X. Recent Developments and Current Applications of Hydrogels in Osteoarthritis. Bioengineering. 2022;9(4):567.
  • Lei Y, Wang X, Liao J, et al. Shear-responsive boundary-lubricated hydrogels attenuate osteoarthritis. Bioact Mater. 2022;16:472–484. doi:10.1016/j.bioactmat.2022.02.016
  • Jiang Y, Fan M, Yang Z, et al. Recent advances in nanotechnology approaches for non-viral gene therapy. Biomater Sci. 2022;10(24):6862–6892. doi:10.1039/D2BM01001A
  • Xu X, Liu C, Wang Y, et al. nanotechnology-boosted delivery of CRISPR/Cas9 for cancer treatment. Adv Drug Deliv Rev. 2021;176:113891. doi:10.1016/j.addr.2021.113891
  • Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev. 2022;188:114416. doi:10.1016/j.addr.2022.114416
  • Cai Y, Wu C, Ou Q, et al. Enhanced osteoarthritis therapy by nanoengineered mesenchymal stem cells using biomimetic CuS nanoparticles loaded with plasmid DNA encoding TGF-beta1. Bioact Mater. 2023;19:444–457. doi:10.1016/j.bioactmat.2022.04.021
  • Ji Q, Xu X, Kang L, et al. Hematopoietic PBX-interacting protein mediates cartilage degeneration during the pathogenesis of osteoarthritis. Nat Commun. 2019;10(1):313. doi:10.1038/s41467-018-08277-5
  • Shen S, Yang Y, Shen P, et al. circPDE4B prevents articular cartilage degeneration and promotes repair by acting as a scaffold for RIC8A and MID1. Ann Rheum Dis. 2021;80(9):1209–1219. doi:10.1136/annrheumdis-2021-219969
  • Ji ML, Jiang H, Wu F, et al. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Ann Rheum Dis. 2021;80(3):356–366. doi:10.1136/annrheumdis-2020-218469
  • Zhao Y, Deng X, Tan S, et al. Co-Polymer Carrier with Dual Advantages of Cartilage-Penetrating and Targeting Improves Delivery and Efficacy of MicroRNA Treatment of Osteoarthritis. Adv Healthc Mater. 2023;12(6):e2202143. doi:10.1002/adhm.202202143
  • Bae Y, Jung MK, Song SJ, et al. Functional nanosome for enhanced mitochondria-targeted gene delivery and expression. Mitochondrion. 2017;37:27–40. doi:10.1016/j.mito.2017.06.005
  • Cheng Y, Ji Y, Tong J. Triple stimuli-responsive supramolecular nanoassembly with mitochondrial targetability for chemophotothermal therapy. J Control Release. 2020;327:35–49. doi:10.1016/j.jconrel.2020.08.006
  • Wani AK, Akhtar N, Mir TUG, et al. Targeting Apoptotic Pathway of Cancer Cells with Phytochemicals and Plant-Based Nanomaterials. Biomolecules. 2023;13(2):194. doi:10.3390/biom13020194
  • Xiong Y, Lin Z, Bu P, et al. A Whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv Mater. 2023;35(19):e2212300. doi:10.1002/adma.202212300
  • Zeng WN, Yu QP, Wang D, et al. Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnology. 2021;19(1):79. doi:10.1186/s12951-021-00831-6
  • Ahmadian E, Eftekhari A, Janas D, Vahedi P. Nanofiber scaffolds based on extracellular matrix for articular cartilage engineering: a perspective. Nanotheranostics. 2023;7(1):61–69. doi:10.7150/ntno.78611
  • Vahedi P, Moghaddamshahabi R, Webster TJ, et al. The use of infrapatellar fat pad-derived mesenchymal stem cells in articular cartilage regeneration: a review. Int J Mol Sci. 2021;22(17):9215. doi:10.3390/ijms22179215
  • Brown S, Kumar S, Sharma B. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 2019;93:239–257. doi:10.1016/j.actbio.2019.03.010