314
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

How Key Alterations of Mesoporous Silica Nanoparticles Affect Anti-Lung Cancer Therapy? A Comprehensive Review of the Literature

, , & ORCID Icon
Pages 5473-5493 | Received 06 Jul 2023, Accepted 14 Sep 2023, Published online: 25 Sep 2023

References

  • Tao MH. Epidemiology of lung cancer. Lung Cancer Imaging. 2019;2019:4.
  • Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung cancer. Nat Rev Dis Prim. 2021;7(1):3. doi:10.1038/s41572-020-00235-0
  • Barta JA, Powell CA, Wisnivesky JP. Global epidemiology of lung cancer. Ann Glob Heal. 2019;85:1.
  • de Groot PM, Wu CC, Carter BW, Munden RF. The epidemiology of lung cancer. Transl Lung Cancer Res. 2018;7(3):220. doi:10.21037/tlcr.2018.05.06
  • Malhotra J, Malvezzi M, Negri E, La Vecchia C, Boffetta P. Risk factors for lung cancer worldwide. Eur Respir J. 2016;48(3):889–902. doi:10.1183/13993003.00359-2016
  • Howlader N, Forjaz G, Mooradian MJ, et al. The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 2020;383(7):640–649. doi:10.1056/NEJMoa1916623
  • Lemjabbar-Alaoui H, Hassan OUI, Yang YW, Buchanan P. Lung cancer: biology and treatment options. Biochim Biophys Acta Rev Cancer. 2015;1856(2):189–210.
  • Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res. 2016;5(3):288. doi:10.21037/tlcr.2016.06.07
  • Rosell R, Bivona TG, Karachaliou N. Genetics and biomarkers in personalisation of lung cancer treatment. Lancet. 2013;382(9893):720–731. doi:10.1016/S0140-6736(13)61715-8
  • Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat Med. 2021;27(8):1345–1356. doi:10.1038/s41591-021-01450-2
  • Cryer AM, Thorley AJ. Nanotechnology in the diagnosis and treatment of lung cancer. Pharmacol Ther. 2019;198:189–205. doi:10.1016/j.pharmthera.2019.02.010
  • Hoy H, Lynch T, Beck M. Surgical treatment of lung cancer. Crit Care Nurs Clin. 2019;31(3):303–313. doi:10.1016/j.cnc.2019.05.002
  • Gigliobianco MR, Casadidio C, Censi R, Di Martino P. Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharmaceutics. 2018;10(3):134. doi:10.3390/pharmaceutics10030134
  • Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20(10):18759–18776. doi:10.3390/molecules201018759
  • Vo CL, Park C, Lee BJ. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3):799–813. doi:10.1016/j.ejpb.2013.09.007
  • Ashford M. Bioavailability–physicochemical and dosage form factors. Aulton’s Pharm Des Manuf Med. 2013;314:1.
  • Dai XL, Chen JM, Lu TB. Pharmaceutical cocrystallization: an effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm. 2018;20(36):5292–5316. doi:10.1039/C8CE00707A
  • Manzano M, Vallet‐Regí M. Mesoporous silica nanoparticles for drug delivery. Adv Funct Mater. 2020;30(2):1902634. doi:10.1002/adfm.201902634
  • Bharti C, Nagaich U, Pal AK, Gulati N. Mesoporous silica nanoparticles in target drug delivery system: a review. Int J Pharm Investig. 2015;5(3):124. doi:10.4103/2230-973X.160844
  • Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanotechnol Biol Med. 2015;11(2):313–327. doi:10.1016/j.nano.2014.09.014
  • Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: current insights. Molecules. 2017;23(1):47. doi:10.3390/molecules23010047
  • Argyo C, Weiss V, Bräuchle C, Bein T. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater. 2014;26(1):435–451. doi:10.1021/cm402592t
  • Maggini L, Cabrera I, Ruiz-Carretero A, Prasetyanto EA, Robinet E, De Cola L. Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2016;8(13):7240–7247. doi:10.1039/C5NR09112H
  • Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev. 2017;46(19):6024–6045. doi:10.1039/C7CS00219J
  • Chen Y, Gu H, Zhang DSZ, Li F, Liu T, Xia W. Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials. 2014;35(38):10058–10069. doi:10.1016/j.biomaterials.2014.09.003
  • Cheng W, Liang C, Xu L, et al. TPGS‐functionalized polydopamine‐modified mesoporous silica as drug nanocarriers for enhanced lung cancer chemotherapy against multidrug resistance. Small. 2017;13(29):1700623. doi:10.1002/smll.201700623
  • Song Y, Zhou B, Du X, et al. Folic acid (FA)-conjugated mesoporous silica nanoparticles combined with MRP-1 siRNA improves the suppressive effects of myricetin on non-small cell lung cancer (NSCLC). Biomed Pharmacother. 2020;125:109561. doi:10.1016/j.biopha.2019.109561
  • Su W, Wei T, Lu M, et al. Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica. Eur J Pharm Sci. 2019;134:246–255. doi:10.1016/j.ejps.2019.04.025
  • Li C, Hu J, Li W, Song G, Shen J. Combined bortezomib-based chemotherapy and p53 gene therapy using hollow mesoporous silica nanospheres for p53 mutant non-small cell lung cancer treatment. Biomater Sci. 2017;5(1):77–88. doi:10.1039/C6BM00449K
  • Kresgea CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359(6397):710–712. doi:10.1038/359710a0
  • Beck JS, Vartuli JC, Roth WJ, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114(27):10834–10843. doi:10.1021/ja00053a020
  • Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J Chem Soc Chem Commun. 1993;680–682. doi:10.1039/c39930000680
  • Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science. 1998;279(5350):548–552. doi:10.1126/science.279.5350.548
  • Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev. 1997;97(6):2373–2420. doi:10.1021/cr960406n
  • Sayari A, Hamoudi S. Periodic mesoporous silica-based organic− inorganic nanocomposite materials. Chem Mater. 2001;13(10):3151–3168. doi:10.1021/cm011039l
  • Ying JY, Mehnert CP, Wong MS. Synthesis and applications of supramolecular‐templated mesoporous materials. Angew Chemie Int Ed. 1999;38(1‐2):56–77. doi:10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
  • Liu XW, Li JW, Zhou L, Huang DS, Zhou YP. Mesoporous silica adsorbents synthesis, characterization, and their adsorption equilibrium properties for CO2, N2 and CH4. Chem Phys Lett. 2005;415:198–201. doi:10.1016/j.cplett.2005.09.009
  • Grün M, Kurganov AA, Schacht S, Schüth F, Unger KK. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J Chromatogr A. 1996;740(1):1–9. doi:10.1016/0021-9673(96)00205-1
  • Raja R, Thomas JM. Catalyst design strategies for controlling reactions in microporous and mesoporous molecular-sieves. J Mol Catal a Chem. 2002;181(1–2):3–14. doi:10.1016/S1381-1169(01)00345-4
  • Polarz S, Kuschel A. Chemistry in confining reaction fields with special emphasis on nanoporous materials. Chem Eur J. 2008;14(32):9816–9829. doi:10.1002/chem.200800674
  • Wu CG, Bein T. Conducting polyaniline filaments in a mesoporous channel host. Science. 1994;264(5166):1757–1759. doi:10.1126/science.264.5166.1757
  • Llewellyn PL, Ciesla U, Decher H, Stadler R, Schüth F, Unger KK. MCM-41 and related materials as media for controlled polymerization processes. In: Studies in Surface Science and Catalysis. Vol. 84. Elsevier; 1994:2013–2020.
  • Cardin DJ, Constantine SP, Gilbert A, et al. Polymerization of alkynes in the channels of mesoporous materials containing Ni and Zn cations: almost complete filling of the voids. J Am Chem Soc. 2001;123(13):3141–3142. doi:10.1021/ja002921f
  • Lin VSY, Radu DR, Han MK, et al. Oxidative polymerization of 1, 4-diethynylbenzene into highly conjugated poly (phenylene butadiynylene) within the channels of surface-functionalized mesoporous silica and alumina materials. J Am Chem Soc. 2002;124(31):9040–9041. doi:10.1021/ja025925o
  • Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM. Functionalized monolayers on ordered mesoporous supports. Science. 1997;276(5314):923–926. doi:10.1126/science.276.5314.923
  • Mercier L, Pinnavaia TJ. Access in mesoporous materials: advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation. Adv Mater. 1997;9(6):500–503. doi:10.1002/adma.19970090611
  • Diaz JF, Balkus KJ. Enzyme immobilization in MCM-41 molecular sieve. J Mol Catal B Enzym. 1996;2(2–3):115–126. doi:10.1016/S1381-1177(96)00017-3
  • Vallet-Regi M, Rámila A, Del Real RP, Pérez-Pariente JJC. A new property of MCM-41: drug delivery system. Chem Mater. 2001;13(2):308–311. doi:10.1021/cm0011559
  • Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I, González-Calbet JM. Revisiting silica based ordered mesoporous materials: medical applications. J Mater Chem. 2006;16(1):26–31. doi:10.1039/B509744D
  • Bearzotti A, Bertolo JM, Innocenzi P, Falcaro P, Traversa E. Humidity sensors based on mesoporous silica thin films synthesised by block copolymers. J Eur Ceram Soc. 2004;24(6):1969–1972. doi:10.1016/S0955-2219(03)00521-1
  • Casasús R, Marcos MD, Martínez-Máñez R, et al. Toward the development of ionically controlled nanoscopic molecular gates. J Am Chem Soc. 2004;126(28):8612–8613. doi:10.1021/ja048095i
  • Yantasee W, Lin Y, Li X, Fryxell GE, Zemanian TS, Viswanathan VV. Nanoengineered electrochemical sensor based on mesoporous silica thin-film functionalized with thiol-terminated monolayer. Analyst. 2003;128(7):899–904. doi:10.1039/b303973k
  • Walcarius A, Bessière J. Electrochemistry with mesoporous silica: selective mercury (II) binding. Chem Mater. 1999;11(11):3009–3011. doi:10.1021/cm990410q
  • Hirano T, Yui T, Okazaki K, et al. Photo-induced electron migrations in the nano-cavities of mesoporous silica sensitized by a cationic porphyrin dye. J Nanosci Nanotechnol. 2009;9(1):495–500. doi:10.1166/jnn.2009.J007
  • Nguyen TQ, Wu J, Doan V, Schwartz BJ, Tolbert SH. Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science. 2000;288(5466):652–656. doi:10.1126/science.288.5466.652
  • Slowing II, Slowing II, Vivero-escoto JL, Trewyn BG, Lin VS. Mesoporous silica nanoparticles: structural design and applications. J Mater Chem. 2010;20(37):7924. doi:10.1039/c0jm00554a
  • Qi K, Chen X, Liu Y, Xin JH, Mak CL, Daoud WA. Facile preparation of anatase/SiO 2 spherical nanocomposites and their application in self-cleaning textiles. J Mater Chem. 2007;17(33):3504–3508. doi:10.1039/b702887c
  • Schmidt HK, Geiter E, Mennig M, Krug H, Becker C, Winkler RP. The sol-gel process for nano-technologies: new nanocomposites with interesting optical and mechanical properties. J Sol-Gel Sci Technol. 1998;13:397–404. doi:10.1023/A:1008660909108
  • Niesz K, Yang P, Somorjai GA. Sol-gel synthesis of ordered mesoporous alumina. Chem Commun. 2005;1986–1987. doi:10.1039/b419249d
  • Hoffmann F, Cornelius M, Morell J, Fröba M. Silica‐based mesoporous organic–inorganic hybrid materials. Angew Chemie Int Ed. 2006;45(20):3216–3251.
  • Newalkar BL, Komarneni S, Katsuki H. Rapid synthesis of mesoporous SBA-15 molecular sieve by a microwave–hydrothermal process. Chem Commun. 2000;2000:2389–2390.
  • Chen Y, Chen H, Guo L, et al. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano. 2010;4(1):529–539. doi:10.1021/nn901398j
  • Barbey R, Lavanant L, Paripovic D, et al. Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev. 2009;109(11):5437–5527. doi:10.1021/cr900045a
  • Nebhani L, Mishra S, Joshi T. Polymer functionalization of mesoporous silica nanoparticles using controlled radical polymerization techniques. Adv Microporous Mesoporous Mater. 2020. doi:10.5772/intechopen.92323
  • Sahoo S, Bordoloi A, Halligudi SB. Ordered mesoporous silica as supports in the heterogeneous asymmetric catalysis. Catal Surv from Asia. 2011;15:200–214. doi:10.1007/s10563-011-9122-z
  • Möller K, Bein T. Degradable drug carriers: vanishing mesoporous silica nanoparticles. Chem Mater. 2019;31(12):4364–4378. doi:10.1021/acs.chemmater.9b00221
  • Guillet-Nicolas R, Marcoux L, Kleitz F. Insights into pore surface modification of mesoporous polymer–silica composites: introduction of reactive amines. New J Chem. 2010;34(2):355–366. doi:10.1039/b9nj00478e
  • Tarn D, Ashley CE, Xue MIN, Carnes EC, Zink JI, Brinker CJ. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc Chem Res. 2013;46(3):792–801. doi:10.1021/ar3000986
  • Paris JL, Cabañas MV, Manzano M, Vallet-Regí M. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers. ACS Nano. 2015;9(11):11023–11033. doi:10.1021/acsnano.5b04378
  • Zheng Y, Wang L, Lu L, Wang Q, Benicewicz BC. pH and thermal dual-responsive nanoparticles for controlled drug delivery with high loading content. Acs Omega. 2017;2(7):3399–3405. doi:10.1021/acsomega.7b00367
  • Gao Y, Gao D, Shen J, Wang Q. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies. Front Chem. 2020;8:598722. doi:10.3389/fchem.2020.598722
  • Dilnawaz F, Sahoo SK. Augmented anticancer efficacy by si-RNA complexed drug-loaded mesoporous silica nanoparticles in lung cancer therapy. ACS Appl Nano Mater. 2018;1(2):730–740. doi:10.1021/acsanm.7b00196
  • Chen F, Zhang F, Shao D, et al. Bioreducible and traceable Ru(III) prodrug-loaded mesoporous silica nanoparticles for sequentially targeted nonsmall cell lung cancer chemotherapy. Appl Mater Today. 2020;19:100558. doi:10.1016/j.apmt.2020.100558
  • Zhang M, Jiang L. Doxorubicin hydrochloride-loaded mesoporous silica nanoparticles inhibit non-small cell lung cancer metastasis by suppressing VEGF-mediated angiogenesis. J Biomed Nanotechnol. 2016;12(11):1975–1986. doi:10.1166/jbn.2016.2290
  • Wang T, Liu Y, Wu C, Yu L, Yu Z, Ye H. Effect of paclitaxel-mesoporous silica nanoparticles with a core-shell structure on the human lung cancer cell line A549. Nanoscale Res Lett. 2017;12(1):1–8. doi:10.1186/s11671-017-1826-1
  • D’Anna C, Di Sano C, Di Vincenzo S, et al. Mesoporous silica particles functionalized with newly extracted fish Oil (Omeg@Silica) Reducing IL-8 counteract cell migration in NSCLC cell lines. Pharmaceutics. 2022;14(10):2079. doi:10.3390/pharmaceutics14102079
  • Shen J, Song G, An M, et al. The use of hollow mesoporous silica nanospheres to encapsulate bortezomib and improve efficacy for non-small cell lung cancer therapy. Biomaterials. 2014;35(1):316–326. doi:10.1016/j.biomaterials.2013.09.098
  • Sun W, Fang N, Trewyn BG, et al. Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem. 2008;391(6):2119–2125. doi:10.1007/s00216-008-2162-1
  • Lee H, Kim S, Choi BH, et al. Hyperthermia improves therapeutic efficacy of doxorubicin carried by mesoporous silica nanocontainers in human lung cancer cells. Int J Hyperth. 2011;27(7):698–707. doi:10.3109/02656736.2011.608217
  • Di Pasqua AJ, Miller ML, Lu X, Peng L, Jay M. Tumor accumulation of neutron-activatable holmium-containing mesoporous silica nanoparticles in an orthotopic non-small cell lung cancer mouse model. Inorganica Chim Acta. 2012;393:334–336. doi:10.1016/j.ica.2012.06.016
  • Wang Y, Huang HY, Yang L, Zhang Z, Ji H. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Sci Rep. 2016;6(May):1–10. doi:10.1038/srep25468
  • Ren L, Ma Z, Li Q, et al. Identifying a membrane-type 2 matrix metalloproteinase-targeting peptide for human lung cancer detection and targeting chemotherapy with functionalized mesoporous silica. ACS Appl Bio Mater. 2019;2(1):397–405. doi:10.1021/acsabm.8b00633
  • Zhang F, Liu W, Long Y, Peng H. Targeted delivery of metformin against lung cancer cells via hyaluronan-modified mesoporous silica nanoparticles. Appl Biochem Biotechnol. 2023;195:4067–4083. doi:10.1007/s12010-022-04289-6
  • Sundarraj S, Thangam R, Sujitha MV, Vimala K, Kannan S. Ligand-conjugated mesoporous silica nanorattles based on enzyme targeted prodrug delivery system for effective lung cancer therapy. Toxicol Appl Pharmacol. 2014;275(3):232–243. doi:10.1016/j.taap.2014.01.012
  • AbouAitah K, Lojkowski W. Delivery of natural agents by means of mesoporous silica nanospheres as a promising anticancer strategy. Pharmaceutics. 2021;13(2):143. doi:10.3390/pharmaceutics13020143
  • Zhou S, Huo D, Hou C, et al. Mesoporous silica-coated quantum dots functionalized with folic acid for lung cancer cell imaging. Anal Methods. 2015;7(22):9649–9654. doi:10.1039/c5ay01760b
  • Perego C, Millini R. Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev. 2013;42(9):3956–3976. doi:10.1039/C2CS35244C
  • Alvarez-Berríos MP, Sosa-Cintron N, Rodriguez-Lugo M, Juneja R, Vivero-Escoto JL. Hybrid nanomaterials based on iron oxide nanoparticles and mesoporous silica nanoparticles: overcoming challenges in current cancer treatments. J Chem. 2016;2016:1–15. doi:10.1155/2016/2672740
  • Rosenholm JM, Sahlgren C, Lindén M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles–opportunities & challenges. Nanoscale. 2010;2(10):1870–1883. doi:10.1039/c0nr00156b
  • Nigro A, Pellegrino M, Greco M, et al. Dealing with skin and blood-brain barriers: the unconventional challenges of mesoporous silica nanoparticles. Pharmaceutics. 2018;10(4):250. doi:10.3390/pharmaceutics10040250
  • Ravinayagam V, Jermy BR. Nanomaterials and their negative effects on human health. Appl Nanomater Hum Heal. 2020;2020:249–273.
  • Hosseinpour S, Walsh LJ, Xu C. Modulating osteoimmune responses by mesoporous silica nanoparticles. ACS Biomater Sci Eng. 2021;8(10):4110–4122. doi:10.1021/acsbiomaterials.1c00899
  • Heidegger S, Gößl D, Schmidt A, et al. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery. Nanoscale. 2016;8(2):938–948. doi:10.1039/C5NR06122A
  • Karagianni A, Kachrimanis K, Nikolakakis I. Co-amorphous solid dispersions for solubility and absorption improvement of drugs: composition, preparation, characterization and formulations for oral delivery. Pharmaceutics. 2018;10(3):98. doi:10.3390/pharmaceutics10030098
  • Al-Obaidi H, Granger A, Hibbard T, Opesanwo S. Pulmonary drug delivery of antimicrobials and anticancer drugs using solid dispersions. Pharmaceutics. 2021;13(7):1056. doi:10.3390/pharmaceutics13071056
  • Okawa S, Sumimoto Y, Masuda K, Ogawara K, Maruyama M, Higaki K. Improvement of lipid solubility and oral bioavailability of a poorly water-and poorly lipid-soluble drug, rebamipide, by utilizing its counter ion and SNEDDS preparation. Eur J Pharm Sci. 2021;159:105721. doi:10.1016/j.ejps.2021.105721
  • Chen C, Yao W, Sun W, et al. A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer. Int J Biol Macromol. 2019;122:1090–1099. doi:10.1016/j.ijbiomac.2018.09.058
  • Nik AB, Zare H, Razavi S, et al. Smart drug delivery: capping strategies for mesoporous silica nanoparticles. Microporous Mesoporous Mater. 2020;299:110115. doi:10.1016/j.micromeso.2020.110115
  • Yang Y, Zhao W, Tan W, et al. An efficient cell-targeting drug delivery system based on aptamer-modified mesoporous silica nanoparticles. Nanoscale Res Lett. 2019;14:1–10. doi:10.1186/s11671-019-3208-3