200
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Mn-Doped Nano-Hydroxyapatites as Theranostic Agents with Tumor pH-Amplified MRI-Signal Capabilities for Guiding Photothermal Therapy

, & ORCID Icon
Pages 6101-6118 | Received 28 Jul 2023, Accepted 13 Oct 2023, Published online: 27 Oct 2023

References

  • Liang S, Liao G, Zhu W, Zhang L. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res. 2022;26(1):32. doi:10.1186/s40824-022-00275-5
  • Xiao S, Yu X, Zhang L, et al. Synthesis of PEG-Coated, ultrasmall, manganese-doped iron oxide nanoparticles with high relaxivity for T1/T2 dual-contrast magnetic resonance imaging. Int J Nanomed. 2019;14:8499–8507. doi:10.2147/IJN.S219749
  • Gu X, Shu T, Deng W, Shen C, Wu Y. An X-ray activatable gold nanorod encapsulated liposome delivery system for mitochondria-targeted photodynamic therapy (PDT). J Mater Chem B. 2023;11(20):4539–4547. doi:10.1039/D3TB00608E
  • Xiao J, Cheng L, Fang T, et al. Nanoparticle-embedded electrospun fiber-covered stent to assist intraluminal photodynamic treatment of oesophageal cancer. Small. 2019;15(49):e1904979. doi:10.1002/smll.201904979
  • Wang H, An L, Tao C, et al. A smart theranostic platform for photoacoustic and magnetic resonance dual-imaging-guided photothermal-enhanced chemodynamic therapy. Nanoscale. 2020;12(8):5139–5150. doi:10.1039/C9NR10039C
  • Kim J, Cho HR, Jeon H, et al. Continuous O2-Evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer. J Am Chem Soc. 2017;139(32):10992–10995. doi:10.1021/jacs.7b05559
  • Chen Q, Feng L, Liu J, et al. Intelligent Albumin-MnO2 Nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater. 2016;28(33):7129–7136. doi:10.1002/adma.201601902
  • Lin T, Zhao X, Zhao S, et al. O2-Generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics. 2018;8(4):990–1004. doi:10.7150/thno.22465
  • Ding B, Zheng P, Ma PA, Lin J. Manganese oxide nanomaterials: synthesis, properties, and theranostic applications. Adv Mater. 2020;32(10):e1905823. doi:10.1002/adma.201905823
  • Guo L, Xin H, Luo X, Zhang C. Phase evolution, mechanical properties and MRI contrast behavior of GdPO4 doped hydroxyapatite for dental applications. Mater Sci Eng C Mater Biol Appl. 2020;111:110858. doi:10.1016/j.msec.2020.110858
  • Tao Q, He G, Ye S, et al. Mn doped Prussian blue nanoparticles for T(1)/T(2) MR imaging, PA imaging and Fenton reaction enhanced mild temperature photothermal therapy of tumor. J Nanobiotechnology. 2022;20(1):18. doi:10.1186/s12951-021-01235-2
  • Zhang HL, Wang Y, Tang Q, Ren B, Yang SP, Liu JG. A mesoporous MnO(2)-based nanoplatform with near infrared light-controlled nitric oxide delivery and tumor microenvironment modulation for enhanced antitumor therapy. J Inorg Biochem. 2023;241:112133. doi:10.1016/j.jinorgbio.2023.112133
  • Xie J, Yan C, Yan Y, et al. Multi-modal Mn-Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale. 2016;8(38):16902–16915. doi:10.1039/C6NR03916B
  • Chen Y, Li H, Deng Y, Sun H, Ke X, Ci T. Ci, near-infrared light triggered drug delivery system for higher efficacy of combined chemo-photothermal treatment. Acta Biomater. 2017;51:374–392. doi:10.1016/j.actbio.2016.12.004
  • Feng Q, Zhang Y, Zhang W, et al. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Acta Biomater. 2016;38:129–142. doi:10.1016/j.actbio.2016.04.024
  • Sun J, Xu W, Li L, et al. Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy. Nanoscale. 2018;10(22):10584–10595. doi:10.1039/C8NR01215F
  • Ji H, Zhang Z, Xu J, Tanabe S, Chen D, Xie RJ. Advance in red-emitting Mn4+-Activated oxyfluoride phosphors. J Inorg Mater. 2020;35(8):554. doi:10.15541/jim20190554
  • Khan MM, Harunsani MH, Tan AL, Hojamberdiev M, Azamay S, Ahmad N. Antibacterial activities of zinc oxide and Mn-Doped zinc oxide synthesized using melastoma malabathricum (L.) Leaf Extract. Bioprocess Biosyst Eng. 2020;43(8):1499–1508. doi:10.1007/s00449-020-02343-3
  • Sinusaite L, Popov A, Raudonyte-Svirbutaviciene E, Yang JC, Kareiva A, Zarkov A. Effect of Mn doping on hydrolysis of low-temperature synthesized metastable alpha-tricalcium phosphate. Ceram Int. 2021;47(9):12078–12083. doi:10.1016/j.ceramint.2021.01.052
  • Chlala D, Griboval-Constant A, Nuns N, Giraudon JM, Labaki M, Lamonier JF. Effect of Mn loading onto hydroxyapatite supported Mn catalysts for toluene removal: contribution of PCA assisted ToF-SIMS. Catal Today. 2018;307:41–47. doi:10.1016/j.cattod.2017.04.018
  • Wang M, Li M, Wang Y, Shao Y, Zhu Y, Yang S. Efficient antibacterial activity of hydroxyapatite through ROS generation motivated by trace Mn(iii) Coupled H Vacancies. J Mater Chem B. 2021;9(15):3401–3411. doi:10.1039/D1TB00098E
  • Ma W, Zhang H, Li S, et al. A multifunctional nanoplatform based on Fenton-like and Russell reactions of Cu, Mn bimetallic ions synergistically enhanced ROS stress for improved chemodynamic therapy. ACS Biomater Sci Eng. 2022;8(3):1354–1366. doi:10.1021/acsbiomaterials.1c01605
  • Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese oxide nanoparticles as MRI contrast agents in tumor multimodal imaging and therapy. Int J Nanomed. 2019;14:8321–8344. doi:10.2147/IJN.S218085
  • He T, Qin X, Jiang C, et al. Tumor pH-Responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gas therapy primed chemodynamic therapy. Theranostics. 2020;10(6):2453–2462. doi:10.7150/thno.42981
  • Lala S, Ghosh M, Das PK, Kar T, Pradhan SK. Mechanical preparation of nanocrystalline biocompatible single-phase Mn-Doped A-Type Carbonated Hydroxyapatite (A-cHAp): effect of Mn Doping on Microstructure. Dalton Trans. 2015;44(46):20087–20097. doi:10.1039/C5DT03398E
  • Evis Z. Microstructural Investigation of Cu2+ Doped Nanohydroxyapatites. Mater Sci Technol. 2013;26(5):630–632. doi:10.1179/174328409X428909
  • Ravindranadh K, Babu B, Manjari VP, Rao GT, Rao MC, Ravikumar RVSSN. Optical and structural properties of undoped and Mn2+ Doped Ca–Li hydroxyapatite nanopowders using mechanochemical synthesis. J Lumin. 2015;159:119–127. doi:10.1016/j.jlumin.2014.10.039
  • Chen F, Huang P, Zhu YJ, Wu J, Zhang CL, Cui DX. The photoluminescence, drug delivery and imaging properties of multifunctional Eu3+/Gd3+ dual-doped hydroxyapatite nanorods. Biomaterials. 2011;32(34):9031–9039. doi:10.1016/j.biomaterials.2011.08.032
  • Xie W, Guo Z, Gao Q, et al. Manganese-doped layered double hydroxide: a biodegradable theranostic nanoplatform with tumor microenvironment response for magnetic resonance imaging-guided photothermal therapy. ACS Appl Bio Mater. 2020;3(9):5845–5855. doi:10.1021/acsabm.0c00564
  • Zhang J, Liang C, Wei Z, et al. TME-Triggered MnSiO(3)@Met@GOx Nanosystem for ATP Dual-Inhibited Starvation/Chemodynamic Synergistic Therapy. Biomaterials. 2022;287:121682. doi:10.1016/j.biomaterials.2022.121682
  • Shurtakova DV, Grishin PO, Gafurov MR, Mamin GV. Using DFT to calculate the parameters of the crystal field in Mn2+ doped hydroxyapatite crystals. Crystals. 2021;11(9):1050. doi:10.3390/cryst11091050
  • Paluszkiewicz C, Ślósarczyk A, Pijocha D, et al. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct. 2010;976(1–3):301–309. doi:10.1016/j.molstruc.2010.04.001
  • Webster TJ, Massa-Schlueter EA, Smith JL, Slamovich EB. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials. 2004;25(11):2111–2121. doi:10.1016/j.biomaterials.2003.09.001
  • Kandori K, Murata R, Yamaguchi Y, Yoshioka A. Protein adsorption behaviors onto Mn(II)-doped calcium hydroxyapatite particles with different morphologies. Colloids Surf B Biointerfaces. 2018;167:36–43. doi:10.1016/j.colsurfb.2018.03.043
  • Van HN, Tam PD, Kien NDT, Huy PT, Pham VH. Enhancing the Luminescence of Eu(3)(+)/Eu(2)(+) Ion-doped hydroxyapatite by fluoridation and thermal annealing. Luminescence. 2017;32(5):817–823. doi:10.1002/bio.3257
  • Wang J, Kong W, Jin H, et al. Tumor microenvironment responsive theranostic agent for enhanced chemo/chemodynamic/photothermal therapy. Colloids Surf B Biointerfaces. 2022;218:112750. doi:10.1016/j.colsurfb.2022.112750
  • Qi C, He J, Fu LH, et al. Huang, tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics. ACS Nano. 2021;15(1):1627–1639. doi:10.1021/acsnano.0c09223
  • Pina S, Canadas RF, Jiménez G, et al. Biofunctional ionic-doped calcium phosphates: silk fibroin composites for bone tissue engineering scaffolding. Cells Tissues Organs. 2017;204(3–4):150–163. doi:10.1159/000469703
  • Türk S, Altınsoy I, Efe GÇ, Ipek M, Özacar M, Bindal C. Biomimetic synthesis of ag, zn or co doped HA and Coating of Ag, Zn or Co Doped HA/fMWCNT composite on functionalized Ti. Mater Sci Eng C Mater Biol Appl. 2019;99:986–998. doi:10.1016/j.msec.2019.02.025
  • Frangville C, Li Y, Billotey C, et al. Assembly of double-hydrophilic block copolymers triggered by gadolinium ions: new colloidal MRI contrast agents. Nano Lett. 2016;16(7):4069–4073. doi:10.1021/acs.nanolett.6b00664
  • Liu H, Cui X, Lu X, Liu X, Zhang L, Chan TS. Mechanism of Mn incorporation into hydroxyapatite: insights from SR-XRD, Raman, XAS, and DFT Calculation. Chem Geol. 2021;579:120354. doi:10.1016/j.chemgeo.2021.120354
  • Zhou Q, Dolgov L, Srivastava AM, et al. Mn2+ and Mn4+ red phosphors: synthesis, luminescence and applications in WLEDs. A review. J Mater Chem C. 2018;6(11):2652–2671. doi:10.1039/C8TC00251G
  • Van HN, Tam PD, Pham VH. Red and yellow luminescence of Eu3+/Dy3+ Co-Doped Hydroxyapatite/β-tricalcium phosphate single phosphors synthesized using coprecipitation method. J Appl Spectrosc. 2018;85(4):738–742. doi:10.1007/s10812-018-0713-6
  • Dong L, Zhu Z, Qiu Y, Zhao J. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite. Front Environ Sci Eng. 2014;10(1):28–36. doi:10.1007/s11783-014-0722-5
  • Chen Z, Li Z, Li C, et al. Manganese-containing polydopamine nanoparticles as theranostic agents for magnetic resonance imaging and photothermal/chemodynamic combined ferroptosis therapy treating gastric cancer. Drug Deliv. 2022;29(1):1201–1211. doi:10.1080/10717544.2022.2059124
  • Su Q, Liu C, Zhu J, et al. Albumin-stabilized manganese oxide/semiconducting polymer nanocomposites for photothermal-chemodynamic therapy of hepatic carcinoma. Front Bioeng Biotechnol. 2022;10:919235. doi:10.3389/fbioe.2022.919235
  • Sun S, Wu D, Zhang J, Fan M, Zeng L. Manganese-doped gold nanoclusters with ultrasmall size and microenvironment-responsive visualized theranostics of tumor. Sci Sin Chim. 2021;51(9):1259–1268. doi:10.1360/SSC-2021-0122
  • An D, Wu X, Gong Y, et al. Manganese-Functionalized MXene theranostic nanoplatform for MRI-guided synergetic photothermal/chemodynamic therapy of cancer. Nanophotonics. 2022;11(22):5177–5188. doi:10.1515/nanoph-2022-0533
  • Zhao Y, Liu Y, Wang Y, et al. Rapidly clearable MnCo 2 O 4@ PAA as novel nanotheranostic agents for T 1/T 2 bimodal MRI imaging-guided photothermal therapy. Nanoscale. 2021;13(38):16251–16257. doi:10.1039/D1NR04067G
  • Duan J, Liao T, Xu X, Liu Y, Kuang Y, Li C. Metal-polyphenol nanodots loaded hollow MnO(2) nanoparticles with a “dynamic protection” property for enhanced cancer chemodynamic therapy. J Colloid Interface Sci. 2023;634:836–851. doi:10.1016/j.jcis.2022.12.088
  • Liu Y, Gao J, Li H, et al. A near-infrared and lysosome-targeted BODIPY photosensitizer for photodynamic and photothermal synergistic therapy. Org Biomol Chem. 2023;21:4672–4682. doi:10.1039/D3OB00465A
  • Lin X, Zhu R, Hong Z, et al. GSH‐responsive radiosensitizers with deep penetration ability for multimodal imaging‐guided synergistic radio‐chemodynamic cancer therapy. Adv Funct Mater. 2021;31(24):2101278. doi:10.1002/adfm.202101278
  • Sun R, Ge Y, Liu H, He P, Song W, Zhang X. Erythrocyte membrane-encapsulated glucose oxidase and manganese/ferrite nanocomposite as a biomimetic “all in one” nanoplatform for cancer therapy. ACS Appl Bio Mater. 2021;4(1):701–710. doi:10.1021/acsabm.0c01226
  • Lu N, Huang P, Fan W, et al. Tri-stimuli-responsive biodegradable theranostics for mild hyperthermia enhanced chemotherapy. Biomaterials. 2017;126:39–48. doi:10.1016/j.biomaterials.2017.02.025