249
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Temperature-Sensitive Nanocarbon Hydrogel for Photothermal Therapy of Tumors

, , , , & ORCID Icon
Pages 6137-6151 | Received 08 Jul 2023, Accepted 12 Oct 2023, Published online: 27 Oct 2023

References

  • Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023. doi:10.3322/caac.21763
  • Zhen W, Weichselbaum RR, Lin W. Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. Adv Materials. 2023;35(21). doi:10.1002/adma.202206370
  • Teng H, Wang Y, Sui X, et al. Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer. Cancer Cell. 2023;41(1):124–138.e6. doi:10.1016/j.ccell.2022.11.013
  • Bueno-Muiño C, Echavarría I, López-Tarruella S, et al. Assessment of a Genomic Assay in Patients With ERBB2 -Positive Breast Cancer Following Neoadjuvant Trastuzumab-Based Chemotherapy With or Without Pertuzumab. JAMA oncol. 2023;9(6):841. doi:10.1001/jamaoncol.2023.0187
  • Guo K, Jiao Z, Zhao X, Hu Y, Zhao N, Xu FJ. Melanin-Based Immunoregulatory Nanohybrids Enhance Antitumor Immune Responses in Breast Cancer Mouse Model. ACS nano. 2023;17(11):10792–10805. doi:10.1021/acsnano.3c02287
  • Zhang C, Pu K. Organic Sonodynamic Materials for Combination Cancer Immunotherapy. Adv Materials. 2023. doi:10.1002/adma.202303059
  • Li G, Liu S, Chen Y, et al. An injectable liposome-anchored teriparatide incorporated gallic acid-grafted gelatin hydrogel for osteoarthritis treatment. Nat Commun. 2023. doi:10.1038/s41467-023-38597-0
  • Sharma R, Yadav S, Yadav V, et al. Recent advances in lipid-based long-acting injectable depot formulations. Adv Drug Deliv Rev. 2023;199:114901. doi:10.1016/j.addr.2023.114901
  • Wu S, Zhang H, Wang S, et al. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. Mater Horizons. 2023;10(9):3507–3522. doi:10.1039/d3mh00042g
  • Zhang Y, Shi K, Yang X, et al. Sustained release of levobupivacaine from temperature-sensitive injectable hydrogel for long-term local anesthesia in postoperative pain management. Biomaterials. 2023. doi:10.1016/j.biomaterials.2023.122129
  • Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction Targeted Therapy. 2021;6(1). doi:10.1038/s41392-021-00830-x
  • Oliva N, Conde J, Wang K, Artzi N. Designing Hydrogels for On-Demand Therapy. Acc Chem Res. 2017;50(4):669–679. doi:10.1021/acs.accounts.6b00536
  • Liang Y, He J, Guo B. Functional Hydrogels as Wound Dressing to Enhance Wound Healing. ACS nano. 2021;15(8):12687–12722. doi:10.1021/acsnano.1c04206
  • Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels. Adv Drug Deliv Rev. 2002;54(1):79–98. doi:10.1016/s0169-409x(01)00241-1
  • Abune L, Wang Y. Affinity Hydrogels for Protein Delivery. Trends Pharmacol Sci. 2021;42(4):300–312. doi:10.1016/j.tips.2021.01.005
  • Yang X, Zhang C, Deng D, Gu Y, Wang H, Zhong Q. Multiple Stimuli-Responsive MXene-Based Hydrogel as Intelligent Drug Delivery Carriers for Deep Chronic Wound Healing. Small. 2022. doi:10.1002/smll.202104368
  • Zong S, Wen H, Lv H, et al. Intelligent hydrogel with both redox and thermo-response based on cellulose nanofiber for controlled drug delivery. Carbohydr Polym. 2022;278. doi:10.1016/j.carbpol.2021.118943
  • Zhou W, Duan Z, Zhao J, Fu R, Zhu C, Fan D. Glucose and MMP-9 dual-responsive hydrogel with temperature sensitive self-adaptive shape and controlled drug release accelerates diabetic wound healing. Bioactive Materials. 2022. doi:10.1016/j.bioactmat.2022.01.004
  • Zheng Y, Wang W, Zhao J, et al. Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydr Polym. 2019;222:115039. doi:10.1016/j.carbpol.2019.115039
  • Li Z, Huang J, Jiang Y, et al. Novel Temperature-Sensitive Hydrogel Promotes Wound Healing Through YAP and MEK-Mediated Mechanosensitivity. Adv Healthcare Mater. 2022. doi:10.1002/adhm.202201878
  • Zeng Y, Huang C, Duan D, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta biomaterialia. 2022. doi:10.1016/j.actbio.2022.09.018
  • Feng P, Luo Y, Ke C, et al. Chitosan-Based Functional Materials for Skin Wound Repair: mechanisms and Applications. Front Bioengineering Biotechnol. 2021;9. doi:10.3389/fbioe.2021.650598
  • Iacob AT, Lupascu FG, Apotrosoaei M, et al. Recent Biomedical Approaches for Chitosan Based Materials as Dru Delivery Nanocarriers. Pharmaceutics. 2021;13(4):587. doi:10.3390/pharmaceutics13040587
  • Guo Y, Chen Y, Han P, et al. Biocompatible chitosan-carbon nanocage hybrids for sustained drug release and highly efficient laser and microwave co-irradiation induced cancer therapy. Acta biomaterialia. 2020;103:237–246. doi:10.1016/j.actbio.2019.12.010
  • Liu C, Yang P, Li J, Cao S, Shi J. NIR/pH-responsive chitosan hydrogels containing TiC/AuNRs with NIR-triggered photothermal effect. Carbohydr Polym. 2022. doi:10.1016/j.carbpol.2022.119853
  • Wasupalli GK, Verma D. Thermosensitive injectable hydrogel based on chitosan-polygalacturonic acid polyelectrolyte complexes for bone tissue engineering. Carbohydr Polym. 2022;294:119769. doi:10.1016/j.carbpol.2022.119769
  • Mei E, Chen C, Li C, et al. Injectable and Biodegradable Chitosan Hydrogel-Based Drug Depot Contributes to Synergistic Treatment of Tumors. Biomacromolecules. 2021;22(12):5339–5348. doi:10.1021/acs.biomac.1c01279
  • Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomaterials sci. 2020;8(19):5241–5259. doi:10.1039/d0bm01158d
  • Zhao L, Zhang X, Wang X, Guan X, Zhang W, Ma J. Recent advances in selective photothermal therapy of tumor. J Nanobiotechnology. 2021;19(1). doi:10.1186/s12951-021-01080-3
  • Huo J, Jia Q, Huang H, et al. Emerging photothermal-derived multimodal synergistic therapy in combating bacterial infections. Chem Soc Rev. 2021;50(15):8762–8789. doi:10.1039/d1cs00074h
  • Li X, Lovell JF, Yoon J, Chen X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol. 2020;17(11):657–674. doi:10.1038/s41571-020-0410-2
  • Salimi M, Mosca S, Gardner B, Palombo F, Matousek P, Stone N. Nanoparticle-Mediated Photothermal Therapy Limitation in Clinical Applications Regarding Pain Management. Nanomaterials. 2022;12(6):6. doi:10.3390/nano12060922
  • Bianchi L, Mooney R, Cornejo YR, et al. Thermal analysis of laser irradiation-gold nanorod combinations at 808 nm, 940 nm, 975 nm and 1064 nm wavelengths in breast cancer model. Int J Hyperthermia. 2021;38(1):1099–1110. doi:10.1080/02656736.2021.1956601
  • Li Z, Lai X, Fu S, et al. Immunogenic Cell Death Activates the Tumor Immune Microenvironment to Boost the Immunotherapy Efficiency. Adv Sci. 2022. doi:10.1002/advs.202201734
  • Li Z, Zhou L, Qin Y, et al. Manganese doped polypyrrole nanoparticles for photothermal/chemodynamic therapy and immune activation. Nanotechnology. 2022. doi:10.1088/1361-6528/ac9739
  • Qiu Y, Wu Z, Chen Y, et al. Nano Ultrasound Contrast Agent for Synergistic Chemo-photothermal Therapy and Enhanced Immunotherapy Against Liver Cancer and Metastasis. Adv Sci. 2023. doi:10.1002/advs.202300878
  • Zhong L, Xia Y, He T, et al. Polymeric photothermal nanoplatform with the inhibition of aquaporin 3 for anti-metastasis therapy of breast cancer. Acta biomaterialia. 2022;153:505–517. doi:10.1016/j.actbio.2022.09.026
  • Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: a Database of CNM-Based Nanocarrier Systems. Pharmaceutics. 2023;15(5):1545. doi:10.3390/pharmaceutics15051545
  • Negri V, Pacheco-Torres J, Calle D, López-Larrubia P. CarbonR Nanotubes in Biomedicine. Topics in Current Chem. 2020. doi:10.1007/s41061-019-0278-8
  • Chen YW, Su YL, Hu SH, Chen SY. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv Drug Deliv Rev. 2016;105:190–204. doi:10.1016/j.addr.2016.05.022
  • Tian Y, Yang P, Lin Y, et al. Assessment of Carbon Nanoparticle Suspension Lymphography-Guided Distal Gastrectomy for Gastric Cancer. JAMA network open. 2022;5(4):e227739. doi:10.1001/jamanetworkopen.2022.7739
  • Liu C, Xu P, Shao S, et al. Study on naked eye tracing of inguinal sentinel lymph nodes in penile cancer patients with carbon nanoparticle suspension injection. Front med. 2023. doi:10.3389/fmed.2023.1139986
  • Huang Y, Xie P, Yang ST, et al. Carbon nanoparticles suspension injection for the delivery of doxorubicin: comparable efficacy and reduced toxicity. Mater Sci Eng C Mater Biol Appl. 2018;92:416–423. doi:10.1016/j.msec.2018.07.012
  • Xie P, Yang ST, He T, Yang S, Tang XH. Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice. Int J Mol Sci. 2017;18(12):12. doi:10.3390/ijms18122562
  • Xie P, Xin Q, Yang ST, et al. Skeleton labeled (13)C-carbon nanoparticles for the imaging and quantification in tumor drainage lymph nodes. Int J Nanomedicine. 2017;12:4891–4899. doi:10.2147/IJN.S134493
  • Tian Y, Lin Y, Guo H, et al. Safety and efficacy of carbon nanoparticle suspension injection and indocyanine green tracer-guided lymph node dissection during robotic distal gastrectomy in patients with gastric cancer. Surg Endosc. 2022;36(5):3209–3216. doi:10.1007/s00464-021-08630-8
  • Wu B, Wan J, Zhang Y, Pan B, Lo IMC. Selective Phosphate Removal from Water and Wastewater using Sorption: process Fundamentals and Removal Mechanisms. Environ Sci Technol. 2020;54(1):50–66. doi:10.1021/acs.est.9b05569
  • Zhao P, Zhang Y, Chen X, et al. Versatile Hydrogel Dressing with Skin Adaptiveness and Mild Photothermal Antibacterial Activity for Methicillin-Resistant Staphylococcus Aureus-Infected Dynamic Wound Healing. Adv Sci. 2023;10(11):e2206585. doi:10.1002/advs.202206585
  • Wang L, Chen S, Pei W, Huang B, Niu C. Magnetically targeted erythrocyte membrane coated nanosystem for synergistic photothermal/chemotherapy of cancer. J Materials Chem B. 2020. doi:10.1039/d0tb00364f
  • Wu F, Zhang M, Lu H, et al. Triple Stimuli-Responsive Magnetic Hollow Porous Carbon-Based Nanodrug Delivery System for Magnetic Resonance Imaging-Guided Synergistic Photothermal/Chemotherapy of Cancer. ACS Appl Mater Interfaces. 2018;10(26):21939–21949. doi:10.1021/acsami.8b07213
  • van Rhoon GC, Wust P. Introduction: non-invasive thermometry for thermotherapy. Int J Hyperthermia. 2005;21(6):489–495. doi:10.1080/02656730500272963
  • Babbs CF, DeWitt DP. Physical principles of local heat therapy for cancer. Med Instrum. 1981;15(6):367–373.