345
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas

&
Pages 6037-6058 | Received 12 Jul 2023, Accepted 18 Oct 2023, Published online: 25 Oct 2023

References

  • Janz TA, Neskey DM, Nguyen SA, Lentsch EJ. Is the incidence of anaplastic thyroid cancer increasing: a population based epidemiology study. World J Otorhinolaryngol Head Neck Surg. 2019;5(1):34–40. doi:10.1016/j.wjorl.2018.05.006
  • Amphlett B, Lawson Z, Abdulrahman GO, et al. Recent trends in the incidence, geographical distribution, and survival from thyroid cancer in Wales, 1985–2010. Thyroid. 2013;23(11):1470–1478. doi:10.1089/thy.2012.0573
  • de Ridder M, Nieveen van Dijkum E, Engelsman A, Kapiteijn E, Klumpen HJ, Rasch CRN. Anaplastic thyroid carcinoma: a nationwide cohort study on incidence, treatment and survival in the Netherlands over 3 decades. Eur J Endocrinol. 2020;183(2):203–209. doi:10.1530/EJE-20-0080
  • Hvilsom GB, Londero SC, Hahn CH, et al. Anaplastic thyroid carcinoma in Denmark 1996–2012: a national prospective study of 219 patients. Cancer Epidemiol. 2018;53:65–71. doi:10.1016/j.canep.2018.01.011
  • Wendler J, Kroiss M, Gast K, et al. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: results of a multicenter study in Germany. Eur J Endocrinol. 2016;175(6):521–529. doi:10.1530/EJE-16-0574
  • Sugitani I, Miyauchi A, Sugino K, Okamoto T, Yoshida A, Suzuki S. Prognostic factors and treatment outcomes for anaplastic thyroid carcinoma: ATC research consortium of Japan cohort study of 677 patients. World J Surg. 2012;36(6):1247–1254. doi:10.1007/s00268-012-1437-z
  • Xu B, Fuchs T, Dogan S, et al. Dissecting anaplastic thyroid carcinoma: a comprehensive clinical, histologic, immunophenotypic, and molecular study of 360 cases. Thyroid. 2020;30(10):1505–1517. doi:10.1089/thy.2020.0086
  • De Crevoisier R, Baudin E, Bachelot A, et al. Combined treatment of anaplastic thyroid carcinoma with surgery, chemotherapy, and hyperfractionated accelerated external radiotherapy. Int J Radiat Oncol Biol Phys. 2004;60(4):1137–1143. doi:10.1016/j.ijrobp.2004.05.032
  • Cabanillas ME, Williams MD, Gunn GB, et al. Facilitating anaplastic thyroid cancer specialized treatment: a model for improving access to multidisciplinary care for patients with anaplastic thyroid cancer. Head Neck. 2017;39(7):1291–1295. doi:10.1002/hed.24784
  • Capdevila J, Wirth LJ, Ernst T, et al. PD-1 blockade in anaplastic thyroid carcinoma. J Clin Oncol. 2020;38(23):2620–2627. doi:10.1200/JCO.19.02727
  • Maniakas A, Dadu R, Busaidy NL, et al. Evaluation of overall survival in patients with anaplastic thyroid carcinoma, 2000–2019. JAMA Oncol. 2020;6(9):1397–1404. doi:10.1001/jamaoncol.2020.3362
  • Molinaro E, Romei C, Biagini A, et al. Anaplastic thyroid carcinoma: from clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 2017;13(11):644–660. doi:10.1038/nrendo.2017.76
  • Bible KC, Kebebew E, Brierley J, et al. 2021 American thyroid association guidelines for management of patients with anaplastic thyroid cancer. Thyroid. 2021;31(3):337–386. doi:10.1089/thy.2020.0944
  • Ryder M, Gild M, Hohl TM, et al. Genetic and pharmacological targeting of CSF-1/CSF-1R inhibits tumor-associated macrophages and impairs BRAF-induced thyroid cancer progression. PLoS One. 2013;8(1):e54302. doi:10.1371/journal.pone.0054302
  • Ito K, Hanamura T, Murayama K, et al. Multimodality therapeutic outcomes in anaplastic thyroid carcinoma: improved survival in subgroups of patients with localized primary tumors. Head Neck. 2012;34(2):230–237. doi:10.1002/hed.21721
  • Cabanillas ME, Dadu R, Iyer P, et al. Acquired secondary RAS Mutation in BRAF(V600E)-Mutated thyroid cancer patients treated with BRAF inhibitors. Thyroid. 2020;30(9):1288–1296. doi:10.1089/thy.2019.0514
  • Sparano C, Godbert Y, Attard M, et al. Limited efficacy of lenvatinib in heavily pretreated anaplastic thyroid cancer: a French overview. Endocr Relat Cancer. 2021;28(1):15–26. doi:10.1530/ERC-20-0106
  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29. doi:10.1016/S1359-6454(99)00285-2
  • Fagin JA, Wells SA. Biologic and clinical perspectives on thyroid cancer. N Engl J Med. 2016;375(11):1054–1067. doi:10.1056/NEJMra1501993
  • Webster TJ. Nanomedicine: what’s in a definition?. Int J Nanomedicine. 2006;1(2):115–116. doi:10.2147/nano.2006.1.2.115
  • Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng. 2019;3(1):011502. doi:10.1063/1.5079943
  • Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM, Daima HK. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg. 2019;6(1):23. doi:10.1186/s40580-019-0193-2
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:193. doi:10.3389/fmolb.2020.00193
  • Zein R, Sharrouf W, Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol. 2020;2020:5194780. doi:10.1155/2020/5194780
  • Huynh E, Zheng G. Cancer nanomedicine: addressing the dark side of the enhanced permeability and retention effect. Nanomedicine. 2015;10(13):1993–1995. doi:10.2217/nnm.15.86
  • Thomas OS, Weber W. Overcoming physiological barriers to nanoparticle delivery-are we there yet?. Front Bioeng Biotechnol. 2019;7:415. doi:10.3389/fbioe.2019.00415
  • Golombek SK, May JN, Theek B, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug Deliv Rev. 2018;130:17–38. doi:10.1016/j.addr.2018.07.007
  • Lopes MBS. The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 2017;134(4):521–535. doi:10.1007/s00401-017-1769-8
  • Celano M, Calvagno MG, Bulotta S, et al. Cytotoxic effects of gemcitabine-loaded liposomes in human anaplastic thyroid carcinoma cells. BMC Cancer. 2004;4:63. doi:10.1186/1471-2407-4-63
  • Cristiano MC, Cosco D, Celia C, et al. Anticancer activity of all-trans retinoic acid-loaded liposomes on human thyroid carcinoma cells. Colloids Surf B Biointerfaces. 2017;150:408–416. doi:10.1016/j.colsurfb.2016.10.052
  • Gao XJ, Li AQ, Zhang X, Liu P, Wang J, Cai X. Thyroid-stimulating hormone (TSH)-armed polymer–lipid nanoparticles for the targeted delivery of cisplatin in thyroid cancers: therapeutic efficacy evaluation. RSC Adv. 2015;5:106413–106420. doi:10.1039/C5RA12588J
  • Li Q, Zhang L, Lang J, et al. Lipid-Peptide-mRNA nanoparticles augment radioiodine uptake in anaplastic thyroid cancer. Adv Sci. 2023;10(3):e2204334. doi:10.1002/advs.202204334
  • Maroof H, Islam F, Dong L, et al. Liposomal delivery of miR-34b-5p induced cancer cell death in thyroid carcinoma. Cells. 2018;7(12):265. doi:10.3390/cells7120265
  • Wang Q, Sui G, Wu X, et al. A sequential targeting nanoplatform for anaplastic thyroid carcinoma theranostics. Acta Biomater. 2020;102:367–383. doi:10.1016/j.actbio.2019.11.043
  • Lombardo GE, Maggisano V, Celano M, et al. Anti-hTERT siRNA-loaded nanoparticles block the growth of anaplastic thyroid cancer xenograft. Mol Cancer Ther. 2018;17(6):1187–1195. doi:10.1158/1535-7163.MCT-17-0559
  • Liu Y, Gunda V, Zhu X, et al. Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc Natl Acad Sci U S A. 2016;113(28):7750–7755. doi:10.1073/pnas.1605841113
  • Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):44. doi:10.1186/s40169-017-0175-0
  • Heydari Z, Mohebbi-Kalhori D, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;81:127–132. doi:10.1016/j.msec.2017.07.041
  • Zhang R, Zhang Y, Tan J, et al. Antitumor Effect of (131)I-Labeled Anti-VEGFR2 targeted mesoporous silica nanoparticles in anaplastic thyroid cancer. Nanoscale Res Lett. 2019;14(1):96. doi:10.1186/s11671-019-2924-z
  • Zhang X, Yan Z, Meng Z, et al. Radionuclide (131)I-labeled albumin-indocyanine green nanoparticles for synergistic combined radio-photothermal therapy of anaplastic thyroid cancer. Front Oncol. 2022;12:889284. doi:10.3389/fonc.2022.889284
  • Zhang C, Chai J, Jia Q, et al. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal therapy against anaplastic thyroid cancer. IUBMB Life. 2022;74(5):433–445. doi:10.1002/iub.2601
  • Liu Y, Ai K, Lu L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev. 2014;114(9):5057–5115. doi:10.1021/cr400407a
  • Wu D, Duan HX, Guan QQ, et al.. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv Funct Mater. 2019;29:1900095. doi:10.1002/adfm.201900095
  • Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem. 2019;62:162. doi:10.1007/s11426-018-9392-6
  • Min Y, Wang X, Chen H, Chen J, Xiang K, Yin G. Thermal ablation for papillary thyroid microcarcinoma: how far we have come?. Cancer Manag Res. 2020;12:13369–13379. doi:10.2147/CMAR.S287473
  • Hu JJ, Cheng YJ, Zhang XZ. Recent advances in nanomaterials for enhanced photothermal therapy of tumors. Nanoscale. 2018;10(48):22657–22672. doi:10.1039/c8nr07627h
  • Liu X, Qin J, Zhang X, et al. The mechanisms of HSA@PDA/Fe nanocomposites with enhanced nanozyme activity and their application in intracellular H(2)O(2) detection. Nanoscale. 2020;12(47):24206–24213. doi:10.1039/d0nr05732k
  • Huang S, Wu Y, Li C, et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to deliver high-loading radioiodine for anaplastic thyroid carcinoma imaging and therapy. Nanoscale. 2021;13(35):15021–15030. doi:10.1039/d1nr02892h
  • Wang K, Wang S, Chen K, Zhao Y, Ma X, Wang L. Doxorubicin-loaded melanin particles for enhanced chemotherapy in drug-resistant anaplastic thyroid cancer cells. J Nanomater. 2018;2018:1–6.
  • Han X, Xu X, Tang Y, et al. BSA-stabilized mesoporous organosilica nanoparticles reversed chemotherapy resistance of anaplastic thyroid cancer by increasing drug uptake and reducing cellular efflux. Front Mol Biosci. 2020;7:610084. doi:10.3389/fmolb.2020.610084
  • Wang C, Zhang R, Tan J, et al. Effect of mesoporous silica nanoparticles co‑loading with 17‑AAG and Torin2 on anaplastic thyroid carcinoma by targeting VEGFR2. Oncol Rep. 2020;43(5):1491–1502. doi:10.3892/or.2020.7537
  • Zhou M, Chen Y, Adachi M, et al. Single agent nanoparticle for radiotherapy and radio-photothermal therapy in anaplastic thyroid cancer. Biomaterials. 2015;57:41–49. doi:10.1016/j.biomaterials.2015.04.013
  • Liu Y, Ma Y, Peng X, et al. Cetuximab-conjugated perfluorohexane/gold nanoparticles for low intensity focused ultrasound diagnosis ablation of thyroid cancer treatment. Sci Technol Adv Mater. 2021;21(1):856–866. doi:10.1080/14686996.2020.1855064
  • Nilubol N, Yuan Z, Paciotti GF, et al. Novel dual-action targeted nanomedicine in mice with metastatic thyroid cancer and pancreatic neuroendocrine tumors. J Natl Cancer Inst. 2018;110(9):1019–1029. doi:10.1093/jnci/djy003
  • Amaral M, Charmier AJ, Afonso RA, et al. Gold-based nanoplataform for the treatment of anaplastic thyroid carcinoma: a step forward. Cancers. 2021;13(6). doi:10.3390/cancers13061242
  • Lvov Y, Abdullayev E. Green and functional polymer-clay nanotube composites with sustained release of chemical agents. Prog Polym Sci. 2013;38:1690. doi:10.1016/j.progpolymsci.2013.05.009
  • Vergaro V, Lvov YM, Leporatti S. Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci. 2012;12(9):1265–1271. doi:10.1002/mabi.201200121
  • Kelly HM, Deasy PB, Ziaka E, Claffey N. Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm. 2004;274(1–2):167–183. doi:10.1016/j.ijpharm.2004.01.019
  • Massaro M, Piana S, Colletti CG, et al. Multicavity halloysite-amphiphilic cyclodextrin hybrids for co-delivery of natural drugs into thyroid cancer cells. J Mater Chem B. 2015;3(19):4074–4081. doi:10.1039/c5tb00564g
  • Casali PG, Trama A. Rationale of the rare cancer list: a consensus paper from the Joint Action on Rare Cancers (JARC) of the European Union (EU). ESMO Open. 2020;5(2):e000666. doi:10.1136/esmoopen-2019-000666
  • Lai WA, Hang JF, Liu CY, et al. PAX8 expression in anaplastic thyroid carcinoma is less than those reported in early studies: a multi-institutional study of 182 cases using the monoclonal antibody MRQ-50. Virchows Arch. 2020;476(3):431–437. doi:10.1007/s00428-019-02708-4
  • Gule MK, Chen Y, Sano D, et al. Targeted therapy of VEGFR2 and EGFR significantly inhibits growth of anaplastic thyroid cancer in an orthotopic murine model. Clin Cancer Res. 2011;17(8):2281–2291. doi:10.1158/1078-0432.CCR-10-2762
  • Ding ZY, Huang YJ, Tang JD, Li G, Jiang PQ, Wu HT. Silencing of hypoxia-inducible factor-1alpha promotes thyroid cancer cell apoptosis and inhibits invasion by downregulating WWP2, WWP9, VEGF and VEGFR2. Exp Ther Med. 2016;12(6):3735–3741. doi:10.3892/etm.2016.3826
  • Nakayama M, Okano T. [Drug delivery systems using nano-sized drug carriers]. Gan To Kagaku Ryoho. 2005;32(7):935–940. Japanese.
  • Ke Y, Xiang C. Transferrin receptor-targeted HMSN for sorafenib delivery in refractory differentiated thyroid cancer therapy. Int J Nanomedicine. 2018;13:8339–8354. doi:10.2147/IJN.S187240
  • Zhu R, Wang Z, Liang P, et al. Efficient VEGF targeting delivery of DOX using Bevacizumab conjugated SiO(2)@LDH for anti-neuroblastoma therapy. Acta Biomater. 2017;63:163–180. doi:10.1016/j.actbio.2017.09.009
  • Missiaen R, Morales-Rodriguez F, Eelen G, Carmeliet P. Targeting endothelial metabolism for anti-angiogenesis therapy: a pharmacological perspective. Vascul Pharmacol. 2017;90:8–18. doi:10.1016/j.vph.2017.01.001
  • Zhao Y, Adjei AA. Targeting angiogenesis in cancer therapy: moving beyond vascular endothelial growth factor. Oncologist. 2015;20(6):660–673. doi:10.1634/theoncologist.2014-0465
  • Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92(19):1564–1572. doi:10.1093/jnci/92.19.1564
  • Porter JR, Fritz CC, Depew KM. Discovery and development of Hsp90 inhibitors: a promising pathway for cancer therapy. Curr Opin Chem Biol. 2010;14(3):412–420. doi:10.1016/j.cbpa.2010.03.019
  • Kim YS, Alarcon SV, Lee S, et al. Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem. 2009;9(15):1479–1492. doi:10.2174/156802609789895728
  • Ahmed M, Hussain AR, Bavi P, et al. High prevalence of mTOR complex activity can be targeted using Torin2 in papillary thyroid carcinoma. Carcinogenesis. 2014;35(7):1564–1572. doi:10.1093/carcin/bgu051
  • Beauchamp EM, Platanias LC. The evolution of the TOR pathway and its role in cancer. Oncogene. 2013;32(34):3923–3932. doi:10.1038/onc.2012.567
  • Tavares C, Eloy C, Melo M, et al. mTOR pathway in papillary thyroid carcinoma: different contributions of mTORC1 and mTORC2 complexes for tumor behavior and SLC5A5 mRNA Expression. Int J Mol Sci. 2018;19(5):1448. doi:10.3390/ijms19051448
  • Faustino A, Couto JP, Populo H, et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin Endocrinol Metab. 2012;97(7):E1139–49. doi:10.1210/jc.2011-2748
  • Sidera K, Patsavoudi E. HSP90 inhibitors: current development and potential in cancer therapy. Recent Pat Anticancer Drug Discov. 2014;9(1):1–20. doi:10.2174/15748928113089990031
  • Chen Y, Chen H, Shi J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv Mater. 2013;25(23):3144–3176. doi:10.1002/adma.201205292
  • Tessier-Cloutier B, Kortekaas KE, Thompson E, et al. Major p53 immunohistochemical patterns in in situ and invasive squamous cell carcinomas of the vulva and correlation with TP53 mutation status. Mod Pathol. 2020;33(8):1595–1605. doi:10.1038/s41379-020-0524-1
  • Yoo SK, Song YS, Lee EK, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10(1):2764. doi:10.1038/s41467-019-10680-5
  • Morgan MA, Lawrence TS. Molecular pathways: overcoming radiation resistance by targeting DNA damage response pathways. Clin Cancer Res. 2015;21(13):2898–2904. doi:10.1158/1078-0432.CCR-13-3229
  • Varinelli L, Caccia D, Volpi CC, et al. 4-IPP, a selective MIF inhibitor, causes mitotic catastrophe in thyroid carcinomas. Endocr Relat Cancer. 2015;22(5):759–775. doi:10.1530/ERC-15-0299
  • Huang S, Zhang L, Xu M, et al. Co-Delivery of (131) I and prima-1 by self-assembled CD44-targeted nanoparticles for anaplastic thyroid carcinoma theranostics. Adv Healthc Mater. 2021;10(3):e2001029. doi:10.1002/adhm.202001029
  • Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234:116781. doi:10.1016/j.lfs.2019.116781
  • Wang T, Shigdar S, Gantier MP, et al. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget. 2015;6(42):44191–44206. doi:10.18632/oncotarget.6176
  • Zhu Z, Hao X, Yan M, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer. 2010;126(9):2067–2078. doi:10.1002/ijc.24868
  • Cheng JX, Liu BL, Zhang X. How powerful is CD133 as a cancer stem cell marker in brain tumors?. Cancer Treat Rev. 2009;35(5):403–408. doi:10.1016/j.ctrv.2009.03.002
  • Yang ZL, Zheng Q, Yan J, Pan Y, Wang ZG. Upregulated CD133 expression in tumorigenesis of colon cancer cells. World J Gastroenterol. 2011;17(7):932–937. doi:10.3748/wjg.v17.i7.932
  • Ge MH, Zhu XH, Shao YM, et al. Synthesis and characterization of CD133 targeted aptamer-drug conjugates for precision therapy of anaplastic thyroid cancer. Biomater Sci. 2021;9(4):1313–1324. doi:10.1039/d0bm01832e
  • Maggisano V, Celano M, Lombardo GE, et al. Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol Cell Endocrinol. 2017;448:34–40. doi:10.1016/j.mce.2017.03.007
  • Takeda T, Inaba H, Yamazaki M, et al. Tumor-specific gene therapy for undifferentiated thyroid carcinoma utilizing the telomerase reverse transcriptase promoter. J Clin Endocrinol Metab. 2003;88(8):3531–3538. doi:10.1210/jc.2002-021856
  • Shepelev MV, Kalinichenko SV, Saakian EK, Korobko IV. Xenobiotic response elements (XREs) from human CYP1A1 gene enhance the hTERT promoter activity. Dokl Biochem Biophys. 2019;485(1):150–152. doi:10.1134/S1607672919020200
  • Chang A, Ling J, Ye H, Zhao H, Zhuo X. Enhancement of nanoparticle-mediated double suicide gene expression driven by ‘E9-hTERT promoter’ switch in dedifferentiated thyroid cancer cells. Bioengineered. 2021;12(1):6572–6578. doi:10.1080/21655979.2021.1974648
  • Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13(3):184–199. doi:10.1038/nrc3431
  • Prabhakar U, Maeda H, Jain RK, et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–2417. doi:10.1158/0008-5472.CAN-12-4561
  • Miller MA, Gadde S, Pfirschke C, et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci Transl Med. 2015;7(314):314ra183. doi:10.1126/scitranslmed.aac6522
  • Arrieta O, Medina LA, Estrada-Lobato E, Ramirez-Tirado LA, Mendoza-Garcia VO, de la Garza-Salazar J. High liposomal doxorubicin tumour tissue distribution, as determined by radiopharmaceutical labelling with (99m)Tc-LD, is associated with the response and survival of patients with unresectable pleural mesothelioma treated with a combination of liposomal doxorubicin and cisplatin. Cancer Chemother Pharmacol. 2014;74(1):211–215. doi:10.1007/s00280-014-2477-x
  • Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature . 2006;440(7083):463–469. doi:10.1038/nature04710
  • Wadhwa S, Wadhwa P, Dinda AK, Gupta NP. Differential expression of potassium ion channels in human renal cell carcinoma. Int Urol Nephrol. 2009;41(2):251–257. doi:10.1007/s11255-008-9459-z
  • Masi A, Becchetti A, Restano-Cassulini R, et al. hERG1 channels are overexpressed in glioblastoma multiforme and modulate VEGF secretion in glioblastoma cell lines. Br J Cancer. 2005;93(7):781–792. doi:10.1038/sj.bjc.6602775
  • Pillozzi S, Brizzi MF, Balzi M, et al. HERG potassium channels are constitutively expressed in primary human acute myeloid leukemias and regulate cell proliferation of normal and leukemic hemopoietic progenitors. Leukemia. 2002;16(9):1791–1798. doi:10.1038/sj.leu.2402572
  • Li G, Hu Z, Yin H, et al. A novel dendritic nanocarrier of polyamidoamine-polyethylene glycol-cyclic RGD for “smart” small interfering RNA delivery and in vitro antitumor effects by human ether-a-go-go-related gene silencing in anaplastic thyroid carcinoma cells. Int J Nanomedicine. 2013;8:1293–1306. doi:10.2147/IJN.S41555
  • Bartolome RA, Martin-Regalado A, Jaen M, et al. Protein tyrosine phosphatase-1B inhibition disrupts IL13Ralpha2-Promoted invasion and metastasis in cancer cells. Cancers. 2020;12(2):500. doi:10.3390/cancers12020500
  • Gu M. IL13Ralpha2 siRNA inhibited cell proliferation, induced cell apoptosis, and suppressed cell invasion in papillary thyroid carcinoma cells. Onco Targets Ther. 2018;11:1345–1352. doi:10.2147/OTT.S153703
  • Tabeshpour J, Mehri S, Shaebani Behbahani F, Hosseinzadeh H. Protective effects of Vitis vinifera (grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: a comprehensive review. Phytother Res. 2018;32(11):2164–2190. doi:10.1002/ptr.6168
  • Xiong L, Lin XM, Nie JH, Ye HS, Liu J. Resveratrol and its nanoparticle suppress doxorubicin/docetaxel-resistant anaplastic thyroid cancer cells in vitro and in vivo. Nanotheranostics. 2021;5(2):143–154. doi:10.7150/ntno.53844
  • Ravera S, Reyna-Neyra A, Ferrandino G, Amzel LM, Carrasco N. The Sodium/Iodide Symporter (NIS): molecular physiology and preclinical and clinical applications. Annu Rev Physiol. 2017;79:261–289. doi:10.1146/annurev-physiol-022516-034125
  • Schmohl KA, Dolp P, Schug C, et al. Reintroducing the sodium-iodide symporter to anaplastic thyroid carcinoma. Thyroid. 2017;27(12):1534–1543. doi:10.1089/thy.2017.0290
  • Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126(3):1052–1066. doi:10.1172/JCI85271
  • Raeesi V, Chan WC. Improving nanoparticle diffusion through tumor collagen matrix by photo-thermal gold nanorods. Nanoscale. 2016;8(25):12524–12530. doi:10.1039/c5nr08463f
  • Ku G, Zhou M, Song S, Huang Q, Hazle J, Li C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano. 2012;6(8):7489–7496. doi:10.1021/nn302782y
  • Li S, Zhang D, Sheng S, Sun H. Targeting thyroid cancer with acid-triggered release of doxorubicin from silicon dioxide nanoparticles. Int J Nanomedicine. 2017;12:5993–6003. doi:10.2147/IJN.S137335
  • Qian CG, Chen YL, Feng PJ, et al. Conjugated polymer nanomaterials for theranostics. Acta Pharmacol Sin. 2017;38(6):764–781. doi:10.1038/aps.2017.42
  • Wohlfart S, Khalansky AS, Gelperina S, et al. Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers. PLoS One. 2011;6(5):e19121. doi:10.1371/journal.pone.0019121
  • Gigliotti CL, Ferrara B, Occhipinti S, et al. Enhanced cytotoxic effect of camptothecin nanosponges in anaplastic thyroid cancer cells in vitro and in vivo on orthotopic xenograft tumors. Drug Deliv. 2017;24(1):670–680. doi:10.1080/10717544.2017.1303856
  • Brierley J, Sherman E. The role of external beam radiation and targeted therapy in thyroid cancer. Semin Radiat Oncol. 2012;22(3):254–262. doi:10.1016/j.semradonc.2012.03.010
  • Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–387. doi:10.1038/nrc1071
  • Kim H, Kim SW, Seok KH, et al. Hypericin-assisted photodynamic therapy against anaplastic thyroid cancer. Photodiagnosis Photodyn Ther. 2018;24:15–21. doi:10.1016/j.pdpdt.2018.08.008
  • Wang HZ, Zhang Y, Xie LP, Yu XY, Zhang RQ. Effects of genistein and daidzein on the cell growth, cell cycle, and differentiation of human and murine melanoma cells(1). J Nutr Biochem. 2002;13(7):421–426. doi:10.1016/s0955-2863(02)00184-5
  • Chodon D, Ramamurty N, Sakthisekaran D. Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In Vitro. 2007;21(5):887–891. doi:10.1016/j.tiv.2007.01.023
  • Yang Y, Liu J, Li X, Li JC. PCDH17 gene promoter demethylation and cell cycle arrest by genistein in gastric cancer. Histol Histopathol. 2012;27(2):217–224. doi:10.14670/HH-27.217
  • Ahn JC, Biswas R, Chung PS. Combination with genistein enhances the efficacy of photodynamic therapy against human anaplastic thyroid cancer cells. Lasers Surg Med. 2012;44(10):840–849. doi:10.1002/lsm.22095
  • Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2010;62(1):1–20. doi:10.1080/01635580903191585
  • Buhklari S, Memon S, Tahir MM, Bhanjer MI. Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. J Mol Struct. 2008;892:39–46. doi:10.1016/j.molstruc.2008.04.050
  • Wei Y, Ye XL, Shang XG, et al.. Enhanced oral bioavailability of silybin by a supersaturatable self-emulsifying drug delivery system (S-SEDDS). Colloids Surf A. 2012;396:22–28. doi:10.1016/j.colsurfa.2011.12.025
  • Yu T, Tong L, Ao Y, Zhang G, Liu Y, Zhang H. Novel design of NIR-triggered plasmonic nanodots capped mesoporous silica nanoparticles loaded with natural capsaicin to inhibition of metastasis of human papillary thyroid carcinoma B-CPAP cells in thyroid cancer chemo-photothermal therapy. J Photochem Photobiol B. 2019;197:111534. doi:10.1016/j.jphotobiol.2019.111534
  • Janssen EM, Dy SM, Meara AS, Kneuertz PJ, Presley CJ, Bridges JFP. Analysis of patient preferences in lung cancer - estimating acceptable tradeoffs between treatment benefit and side effects. Patient Prefer Adherence. 2020;14:927–937. doi:10.2147/PPA.S235430
  • Xu M, Yim W, Zhou J, et al. The application of organic nanomaterials for bioimaging, drug delivery, and therapy. IEEE Nanotechnol Mag. 2021;15(4):8–28. doi:10.1109/MNANO.2021.3081758
  • Lechuga-Islas VD, Trejo-Maldonado M, Anufriev I, et al. All-aqueous, surfactant-free, and pH-driven nanoformulation methods of dual-responsive polymer nanoparticles and their potential use as nanocarriers of pH-sensitive drugs. Macromol Biosci. 2023;23(1):e2200262. doi:10.1002/mabi.202200262
  • Deng C, Zhao J, Zhou S, et al. The vascular disrupting agent CA4P improves the antitumor efficacy of CAR-T cells in preclinical models of solid human tumors. Mol Ther. 2020;28(1):75–88. doi:10.1016/j.ymthe.2019.10.010
  • Iqbal MA, Li M, Lin J, et al. Preliminary study on the sequencing of whole genomic methylation and transcriptome-related genes in thyroid carcinoma. Cancers. 2022;14(5). doi:10.3390/cancers14051163
  • Chudasama V. Antibody - Drug conjugates (ADC) - Drug discovery today: technologies. Drug Discov Today Technol. 2018;30:1–2. doi:10.1016/j.ddtec.2018.11.003
  • Lee S, Oudjedi F, Kirk A, Paliouras M, Trifiro M. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol. 2023;14(1). doi:10.1186/s12645-023-00184-9
  • Yu Y, Li J, Song B, et al. Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy. Biomaterials. 2022;280:121312. doi:10.1016/j.biomaterials.2021.121312
  • Liang J, Jin Z, Kuang J, et al. The role of anlotinib-mediated EGFR blockade in a positive feedback loop of CXCL11-EGF-EGFR signalling in anaplastic thyroid cancer angiogenesis. Br J Cancer. 2021;125(3):390–401. doi:10.1038/s41416-021-01340-x
  • Yin M, Di G, Bian M. Dysfunction of natural killer cells mediated by PD-1 and Tim-3 pathway in anaplastic thyroid cancer. Int Immunopharmacol. 2018;64:333–339. doi:10.1016/j.intimp.2018.09.016