427
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Potential Efficacy of Herbal Medicine-Derived Carbon Dots in the Treatment of Diseases: From Mechanism to Clinic

, , , ORCID Icon, , , , , & show all
Pages 6503-6525 | Received 18 Jul 2023, Accepted 24 Oct 2023, Published online: 08 Nov 2023

References

  • Shen LM, Liu J. New development in carbon quantum dots technical applications. Talanta. 2016;156–157:245–256. doi:10.1016/j.talanta.2016.05.028
  • Wang K, Gao Z, Gao G, et al. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett. 2013;8(1):122. doi:10.1186/1556-276X-8-122
  • Gong N, Ma X, Ye X, et al.. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat Nanotechnol. 2019;14(4):379–387. doi:10.1038/s41565-019-0373-6
  • Lu L, Feng C, Xu J, et al.. Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu in liver cells. Biosens Bioelectron. 2017;92:101–108. doi:10.1016/j.bios.2017.01.066
  • Truskewycz A, Yin H, Halberg N, et al.. Carbon dot therapeutic platforms: administration, distribution, metabolism, excretion, toxicity, and therapeutic potential. Small. 2022;18(16):e2106342. doi:10.1002/smll.202106342
  • Egorova MN, Tomskaya AE, Kapitonov AN, Alekseev AA, Smagulova SA. Hydrothermal synthesis of luminescent carbon dots from glucose and birch bark soot. J Struct Chem. 2018;59:780.
  • Liu Y, Zhao Y, Zhang YS. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper(II) ion detection. Actuators B Chem. 2014;196:647. doi:10.1016/j.snb.2014.02.053
  • Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N, Xu Y. Traditional herbal medicine candidates as complementary treatments for COVID-19: a review of their mechanisms, pros and cons. Evid Based Complement Alternat Med. 2020;2020:2560645. doi:10.1155/2020/2560645
  • Yi Y, Lamikanra O, Sun J, Wang LM, Min T, Wang HX. Activity diversity structure-activity relationship of polysaccharides from lotus root varieties. Carbohydr Polym. 2018;190:67–76. doi:10.1016/j.carbpol.2017.11.090
  • Dai J, Wang YJ, Research E. Nitrogen-doped carbon quantum dots with Pinellia ternata as carbon source for high sensitive determination of chromium (VI). Appl EcolEnviron Res. 2019;17:12139–12153.
  • Sun L, Zhang R, Zhang T, et al. Synthesis, applications and biosafety evaluation of carbon dots derived from herbal medicine. Biomed Mater. 2023;18(4):042004. doi:10.1088/1748-605X/acdeb8
  • Sun Z, Lu F, Cheng J, et al.. Haemostatic bioactivity of novel Schizonepetae Spica Carbonisata-derived carbon dots via platelet counts elevation. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S308–S317. doi:10.1080/21691401.2018.1492419
  • Miao P, Han K, Tang Y, Wang B, Lin T, Cheng W. Recent advances in carbon nanodots: synthesis, properties and biomedical applications. Nanoscale. 2015;7(5):1586–1595. doi:10.1039/c4nr05712k
  • Li W, Wang S, Li Y, et al.. One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydr Polym. 2017;175:7–17. doi:10.1016/j.carbpol.2017.07.062
  • Tang S, Zhang H, Mei L, et al.. Fucoidan-derived carbon dots against Enterococcus faecalis biofilm and infected dentinal tubules for the treatment of persistent endodontic infections. J Nanobiotechnology. 2022;20(1):321. doi:10.1186/s12951-022-01501-x
  • Wang Y, Chen J, Tian J, et al.. Tryptophan-sorbitol based carbon quantum dots for theranostics against hepatocellular carcinoma. J Nanobiotechnology. 2022;20(1):78. doi:10.1186/s12951-022-01275-2
  • Zheng X, Qin K, He L, et al.. Novel fluorescent nitrogen-doped carbon dots derived from Panax notoginseng for bioimaging and high selectivity detection of Cr6. Analyst. 2021;146(3):911–919. doi:10.1039/d0an01599g
  • Li L, Li L, Chen C-P, Cui F. Green synthesis of nitrogen-doped carbon dots from ginkgo fruits and the application in cell imaging. Inorg Chem Commun. 2017;86:227–231. doi:10.1016/j.inoche.2017.10.006
  • Shen Y, Wu H, Wu W, Zhou L, Dai Z, Dong S. A facile hydrothermal method to synthesize fluorescent carbon dots for detecting iron. Mat Express. 2020;10(7):1135. doi:10.1166/mex.2020.1745
  • Zhang S, Wang Z, Pang Y, et al.. Highly fluorescent carbon dots from coix seed for the determination of furazolidone and temperature. Spectrochim Acta A Mol Biomol Spectrosc. 2021;260:119969. doi:10.1016/j.saa.2021.119969
  • Li Y, Li W, Yang X, et al.. Salvia Miltiorrhiza -derived carbon dots as scavengers of reactive oxygen species for reducing oxidative damage of plants. ACS Appl Nano Mater. 2021;4(1):113. doi:10.1021/acsanm.0c02419
  • Surendran P, Lakshmanan A, Vinitha G, Ramalingam G, Rameshkumar P. Facile preparation of high fluorescent carbon quantum dots from Orange waste peels for nonlinear optical applications. Luminescence. 2020;35(2):196–202. doi:10.1002/bio.3713
  • Wang M, Shi R, Gao M, et al.. Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on Orange peels-derived carbon dots modified with EDTA. Food Chem. 2020;318:126506. doi:10.1016/j.foodchem.2020.126506
  • Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Dou Y. Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging. Biosens Bioelectron. 2014;60:292–298. doi:10.1016/j.bios.2014.04.046
  • Xu H, Yang X, Li G, Zhao C, Liao X. Green synthesis of fluorescent carbon dots for selective detection of tartrazine in food samples. J Agric Food Chem. 2015;63(30):6707–6714. doi:10.1021/acs.jafc.5b02319
  • Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A review of carbon dots produced from biomass wastes. Nanomaterials. 2020;10(11):2316. doi:10.3390/nano10112316
  • Wang R, Lu K-Q, Tang Z-R, Xu Y-J. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A. 2017;5(8):3717–3734. doi:10.1039/C6TA08660H
  • Chen Z, Ye SY, Yang Y, Li ZY. A review on charred traditional Chinese herbs: carbonization to yield a haemostatic effect. Pharm Biol. 2019;57(1):498–506. doi:10.1080/13880209.2019.1645700
  • Dager A, Uchida T, Maekawa T, Tachibana M. Synthesis and characterization of mono-disperse carbon quantum dots from fennel seeds: photoluminescence analysis using machine learning. Sci Rep. 2019;9(1):14004. doi:10.1038/s41598-019-50397-5
  • Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett. 2012;66(1):222–224. doi:10.1016/j.matlet.2011.08.081
  • Zhang M, Cheng J, Hu J, et al.. Green Phellodendri Chinensis Cortex-based carbon dots for ameliorating imiquimod-induced psoriasis-like inflammation in mice. J Nanobiotechnology. 2021;19(1):105. doi:10.1186/s12951-021-00847-y
  • Zhang M, Cheng J, Zhang Y, et al.. Green synthesis of Zingiberis rhizoma-based carbon dots attenuates chemical and thermal stimulus pain in mice. Nanomedicine. 2020;15(9):851–869. doi:10.2217/nnm-2019-0369
  • Jović D, Jaćević V, Kuča K, et al.. The puzzling potential of carbon nanomaterials: general properties, application, and toxicity. Nanomaterials. 2020;10(8):1508. doi:10.3390/nano10081508
  • Abu Rabe DI, Al Awak MM, Yang F, et al.. The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity. Int J Nanomedicine. 2019;14:2655–2665. doi:10.2147/IJN.S200493
  • Ghosal K, Ghosh A. Carbon dots: the next generation platform for biomedical applications. Mater Sci Eng C Mater Biol Appl. 2019;96:887–903. doi:10.1016/j.msec.2018.11.060
  • In I, Park SY, Lim D, et al. Correction to simple microwave-assisted synthesis of amphiphilic carbon quantum dots from A3/B2 polyamidation monomer set. ACS Appl Mater Interfaces. 2018;10(3):3153. doi:10.1021/acsami.7b18854
  • Liu H, He Z, Jiang LP, Zhu JJ. Microwave-assisted synthesis of wavelength-tunable photoluminescent carbon nanodots and their potential applications. ACS Appl Mater Interfaces. 2015;7(8):4913–4920. doi:10.1021/am508994w
  • Shen Z, Zhang C, Yu X, et al.. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J Mater Chem C. 2018;6(36):9636–9641. doi:10.1039/C8TC02982B
  • Chung S, Revia RA, Zhang M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy. Adv Mater. 2021;33(22):e1904362. doi:10.1002/adma.201904362
  • Hu X, Li Y, Xu Y, et al.. Green one-step synthesis of carbon quantum dots from Orange peel for fluorescent detection of Escherichia coli in milk. Food Chem. 2021;339:127775. doi:10.1016/j.foodchem.2020.127775
  • Architha N, Ragupathi M, Shobana C, et al.. Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican Mint extract for fe detection and bio-imaging applications. Environ Res. 2021;199:111263. doi:10.1016/j.envres.2021.111263
  • Feng J, Wang WJ, Hai X, Yu YL, Wang JH. Green preparation of nitrogen-doped carbon dots derived from silkworm chrysalis for cell imaging. J Mater Chem B. 2016;4(3):387–393. doi:10.1039/c5tb01999k
  • Isnaeni Rahmawati I, Intan R, Zakaria M. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique. J Phys. 2018;985:012004.
  • Tejwan N, Sharma A, Thakur S, Das J. Green synthesis of a novel carbon dots from red Korean ginseng and its application for Fe sensing and preparation of nanocatalyst2+. Inorg Chem Commun. 2021;134:108985. doi:10.1016/j.inoche.2021.108985
  • Tejwan N, Kundu M, Sharma A, Das J. Preprint; 2020. Available from: https://www.researchsquare.com/article/rs-28922/v1. Accessed November 1, 2023.
  • Feng Y, Zhong D, Miao H, Yang X. Carbon dots derived from rose flowers for tetracycline sensing. Talanta. 2015;140:128–133. doi:10.1016/j.talanta.2015.03.038
  • Tejwan N, Saini AK, Sharma A, Singh TA, Kumar N, Das J. Metal-doped and hybrid carbon dots: a comprehensive review on their synthesis and biomedical applications. J Control Release. 2021;330:132–150. doi:10.1016/j.jconrel.2020.12.023
  • Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW, Milliron DJ. Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev. 2018;118(6):3121–3207. doi:10.1021/acs.chemrev.7b00613
  • Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron. 2016;85:68–75. doi:10.1016/j.bios.2016.04.089
  • Moreira VA, Toito Suarez W, de Oliveira Krambeck Franco M, Gambarra Neto FF. Eco-friendly synthesis of cuprizone-functionalized luminescent carbon dots and application as a sensor for the determination of copper(ii) in wastewater. Anal Methods. 2018;10(37):4570. doi:10.1039/C8AY00928G
  • Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P. Sugarcane juice derived carbon dot-graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation. Beilstein J Nanotechnol. 2018;9:353–363. doi:10.3762/bjnano.9.35
  • Qiu Y, Gao D, Yin H, et al.. Facile, green and energy-efficient preparation of fluorescent carbon dots from processed traditional Chinese medicine and their applications for on-site semi-quantitative visual detection of Cr(VI). Sens Actuators B Chem. 2020;324:128722. doi:10.1016/j.snb.2020.128722
  • Luo WK, Zhang LL, Yang ZY, et al.. Herbal medicine derived carbon dots: synthesis and applications in therapeutics, bioimaging and sensing. J Nanobiotechnology. 2021;19(1):320. doi:10.1186/s12951-021-01072-3
  • Xue M, Zou M, Zhao J, Zhan Z, Zhao S. Green preparation of fluorescent carbon dots from lychee seeds and their application for the selective detection of methylene blue and imaging in living cells. J Mater Chem B. 2015;3(33):6783–6789. doi:10.1039/c5tb01073j
  • Parvin N, Mandal TK. Synthesis of a highly fluorescence nitrogen-doped carbon quantum dots bioimaging probe and its in vivo clearance and printing applications. RSC Adv. 2016;6(22):18134–18140. doi:10.1039/C5RA25402G
  • Wang X, Wu T, Yang Y, et al.. Ultrasmall and highly biocompatible carbon dots derived from natural plant with amelioration against acute kidney injury. J Nanobiotechnology. 2023;21(1):63. doi:10.1186/s12951-023-01795-5
  • Zhou Y, Peng Z, Seven ES, Leblanc RM. Crossing the blood-brain barrier with nanoparticles. J Control Release. 2018;270:290–303. doi:10.1016/j.jconrel.2017.12.015
  • Ashrafizadeh M, Mohammadinejad R, Kailasa SK, Ahmadi Z, Afshar EG, Pardakhty A. Carbon dots as versatile nanoarchitectures for the treatment of neurological disorders and their theranostic applications: a review. Adv Colloid Interface Sci. 2020;278:102123. doi:10.1016/j.cis.2020.102123
  • Li Y, Liu Y, Cui J, et al. Cohort studies on chronic non-communicable diseases treated with traditional Chinese medicine: a bibliometric analysis. Front Pharmacol. 2021;12:639860. doi:10.3389/fphar.2021.639860
  • Zhang M, Zhao Y, Cheng J, et al.. Novel carbon dots derived from Schizonepetae Herba Carbonisata and investigation of their haemostatic efficacy. Artif Cells Nanomed Biotechnol. 2018;46(8):1562–1571. doi:10.1080/21691401.2017.1379015
  • Zhang JH, Niu A, Li J, Fu JW, Xu Q, Pei DS. In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish. Sci Rep. 2016;6:37860. doi:10.1038/srep37860
  • Jiang X, Qin D, Mo G, et al.. Ginkgo leaf-based synthesis of nitrogen-doped carbon quantum dots for highly sensitive detection of salazosulfapyridine in mouse plasma. J Pharm Biomed Anal. 2019;164:514–519. doi:10.1016/j.jpba.2018.11.025
  • Singh I, Arora R, Dhiman H, Pahwa R. Carbon quantum dots: synthesis, characterization and biomedical applications. Turk J Pharm Sci. 2018;15(2):219–230. doi:10.4274/tjps.63497
  • Sun X, He J, Yang S, et al. Green synthesis of carbon dots originated from Lycii Fructus for effective fluorescent sensing of ferric ion and multicolor cell imaging. J Photochem Photobiol B. 2017;175:219–225. doi:10.1016/j.jphotobiol.2017.08.035
  • Murugan N, Sundaramoorthy AK. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe 3+ ions. New J Chem. 2018;42(16):13297–13307. doi:10.1039/C8NJ01894D
  • Roy P, Chen PC, Periasamy AP, Chen YN, Chang HT. Photoluminescent carbon nanodots: synthesis, physicochemical properties and analytical applications. Mater Today. 2015;18(8):447–458. doi:10.1016/j.mattod.2015.04.005
  • Dehvari K, Liu KY, Tseng PJ, Gedda G, Girma WM, Chang JY. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. J Taiwan Inst Chem Eng. 2019;95:495–503. doi:10.1016/j.jtice.2018.08.037
  • Hu Q, Gong X, Liu L, Choi MM. Characterization and analytical separation of fluorescent carbon nanodots. J Nanomater. 2017;2017:1–23.
  • Parvin N, Kumar V, Joo SW, Park SS, Mandal TK. Recent advances in the characterized identification of mono-to-multi-layer graphene and its biomedical applications: a review. Electronics. 2022;11(20):3345. doi:10.3390/electronics11203345
  • Dager A, Baliyan A, Kurosu S, Maekawa T, Tachibana M. Ultrafast synthesis of carbon quantum dots from fenugreek seeds using microwave plasma enhanced decomposition: application of C-QDs to grow fluorescent protein crystals. Sci Rep. 2020;10(1):12333. doi:10.1038/s41598-020-69264-9
  • Kailasa SK, Ha S, Baek SH, et al. Tuning of carbon dots emission color for sensing of Fe3+ ion and bioimaging applications. Mater Sci Eng C Mater Biol Appl. 2019;98:834–842. doi:10.1016/j.msec.2019.01.002
  • Bunaciu AA, Udriştioiu EG, Aboul-Enein HY. X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem. 2015;45(4):289–299. doi:10.1080/10408347.2014.949616
  • Arul V, Sethuraman MG. Facile green synthesis of fluorescent N-doped carbon dots from Actinidia deliciosa and their catalytic activity and cytotoxicity applications. Opt Mater. 2018;78:181–190. doi:10.1016/j.optmat.2018.02.029
  • Rasmussen MK, Pedersen JN, Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020;11(1):2337. doi:10.1038/s41467-020-15889-3
  • Sivasankaran U, Jesny S, Jose AR, Girish Kumar K. Fluorescence determination of glutathione using tissue paper-derived carbon dots as fluorophores. Anal Sci. 2017;33(3):281–285. doi:10.2116/analsci.33.281
  • Ramanan V, Thiyagarajan SK, Raji K, Suresh R, Sekar R, Ramamurthy P. Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain Chem Eng. 2016;4(9):4724–4731. doi:10.1021/acssuschemeng.6b00935
  • Wang Y, Kong H, Liu X, et al.. Novel carbon dots derived from cirsii japonici herba carbonisata and their haemostatic effect. J Biomed Nanotechnol. 2018;14(9):1635–1644. doi:10.1166/jbn.2018.2613
  • Yan X, Zhao Y, Luo J, et al.. Hemostatic bioactivity of novel Pollen Typhae Carbonisata-derived carbon quantum dots. J Nanobiotechnology. 2017;15(1):60. doi:10.1186/s12951-017-0296-z
  • Luo J, Zhang M, Cheng J, et al.. Hemostatic effect of novel carbon dots derived from Cirsium setosum Carbonisata. RSC Adv. 2018;8(66):37707–37714. doi:10.1039/c8ra06340k
  • Cheng J, Zhang M, Sun Z, et al.. Hemostatic and hepatoprotective bioactivity of junci medulla carbonisata-derived carbon dots. Nanomedicine. 2019;14(4):431–446. doi:10.2217/nnm-2018-0285
  • Zhao Y, Zhang Y, Liu X, et al.. Novel carbon quantum dots from egg yolk oil and their haemostatic effects. Sci Rep. 2017;7(1):4452. doi:10.1038/s41598-017-04073-1
  • Han B, Shen L, Xie H, et al.. Synthesis of carbon dots with hemostatic effects using traditional Chinese medicine as a biomass carbon source. ACS Omega. 2023;8(3):3176–3183. doi:10.1021/acsomega.2c06600
  • Liu X, Wang Y, Yan X, et al.. Novel Phellodendri Cortex (Huang Bo)-derived carbon dots and their hemostatic effect. Nanomedicine. 2018;13(4):391–405. doi:10.2217/nnm-2017-0297
  • Luo J, Kong H, Zhang M, et al.. Novel carbon dots-derived from radix puerariae carbonisata significantly improve the solubility and bioavailability of baicalin. J Biomed Nanotechnol. 2019;15(1):151–161. doi:10.1166/jbn.2019.2675
  • Sun Z, Lu F, Cheng J, et al.. Hypoglycemic bioactivity of novel eco-friendly carbon dots derived from traditional Chinese medicine. J Biomed Nanotechnol. 2018;14(12):2146–2155. doi:10.1166/jbn.2018.2653
  • Xu Y, Wang B, Zhang M, et al. Carbon dots as a potential therapeutic agent for the treatment of cancer-related anemia. Adv Mater. 2022;34(19):e2200905. doi:10.1002/adma.202200905
  • Sun Y, Zhang M, Bhandari B, Yang C. Recent development of carbon quantum dots: biological toxicity, antibacterial properties and application in foods. Food Rev Int. 2022;38(7):1513. doi:10.1080/87559129.2020.1818255
  • Dong X, Liang W, Meziani MJ, Sun YP, Yang L. Carbon dots as potent antimicrobial agents. Theranostics. 2020;10(2):671–686. doi:10.7150/thno.39863
  • Wu Y, Li C, van der Mei HC, Busscher HJ, Ren Y. Carbon quantum dots derived from different carbon sources for antibacterial applications. Antibiotics. 2021;10(6):623. doi:10.3390/antibiotics10060623
  • Venkateswarlu S, Viswanath B, Reddy AS, Yoon M. Sens Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Actuators B Chem. 2018;258:172. doi:10.1016/j.snb.2017.11.044
  • Lin R, Cheng S, Tan M. Green synthesis of fluorescent carbon dots with antibacterial activity and their application in Atlantic mackerel (Scomber scombrus) storage. Food Funct. 2022;13(4):2098–2108. doi:10.1039/d1fo03426j
  • Wang X, Zhang Y, Kong H, et al.. Novel mulberry silkworm cocoon-derived carbon dots and their anti-inflammatory properties. Artif Cells Nanomed Biotechnol. 2020;48(1):68–76. doi:10.1080/21691401.2019.1699810
  • Wang S, Zhang Y, Kong H, et al.. Antihyperuricemic and anti-gouty arthritis activities of Aurantii fructus immaturus carbonisata-derived carbon dots. Nanomedicine. 2019;14(22):2925–2939. doi:10.2217/nnm-2019-0255
  • Wang X, Zhang Y, Zhang M, et al.. Novel carbon dots derived from Puerariae lobatae radix and their anti-gout effects. Molecules. 2019;24(22):4152. doi:10.3390/molecules24224152
  • Wu J, Zhang M, Cheng J, et al.. Effect of Lonicerae japonicae flos carbonisata-derived carbon dots on rat models of fever and hypothermia induced by lipopolysaccharide. Int J Nanomedicine. 2020;15:4139–4149. doi:10.2147/IJN.S248467
  • Lorentzen AK, Davis C, Penninga L. Interventions for frostbite injuries. Cochrane Database Syst Rev. 2020;12(12):CD012980. doi:10.1002/14651858.CD012980.pub2
  • Kong H, Zhao Y, Zhu Y, et al.. Carbon dots from artemisiae argyi folium carbonisata: strengthening the anti-frostbite ability. Artif Cells Nanomed Biotechnol. 2021;49(1):11–19. doi:10.1080/21691401.2020.1862134
  • Kong H, Zhao Y, Cao P, et al.. The bioactivity of scutellariae radix carbonisata-derived carbon dots: antiallergic effect. J Biomed Nanotechnol. 2021;17(12):2485–2494. doi:10.1166/jbn.2021.3200
  • Zhao Y, Zhang Y, Kong H, Cheng G, Qu H, Zhao Y. Protective effects of carbon dots derived from Armeniacae Semen Amarum Carbonisata against acute lung injury induced by lipopolysaccharides in rats. Int J Nanomedicine. 2022;17:1–14. doi:10.2147/IJN.S338886
  • Zhang M, Cheng J, Sun Z, et al.. Protective effects of carbon dots derived from phellodendri chinensis cortex carbonisata against deinagkistrodon acutus venom-induced acute kidney injury. Nanoscale Res Lett. 2019;14(1):377. doi:10.1186/s11671-019-3198-1
  • He J, Hou XY. The potential contributions of traditional Chinese medicine to emergency medicine. World J Emerg Med. 2013;4(2):92–97. doi:10.5847/wjem.j.issn.1920-8642.2013.02.002
  • Zhao Y, Zhang Y, Kong H, et al.. Carbon dots from paeoniae radix alba carbonisata: hepatoprotective effect. Int J Nanomedicine. 2020;15:9049–9059. doi:10.2147/IJN.S281976
  • Hu J, Luo J, Zhang M, et al.. Protective effects of radix sophorae flavescentis carbonisata-based carbon dots against ethanol-induced acute gastric ulcer in rats: anti-inflammatory and antioxidant activities. Int J Nanomedicine. 2021;16:2461–2475. doi:10.2147/IJN.S289515
  • Liu Y, Zhang M, Cheng J, et al.. Novel carbon dots derived from Glycyrrhizae Radix et Rhizoma and their anti-gastric ulcer effect. Molecules. 2021;26(6):1512. doi:10.3390/molecules26061512
  • Li CL, Ou CM, Huang CC, et al.. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J Mater Chem B. 2014;2(28):4564–4571. doi:10.1039/c4tb00216d
  • Yao H, Li J, Song Y, et al.. Synthesis of ginsenoside Re-based carbon dots applied for bioimaging and effective inhibition of cancer cells. Int J Nanomedicine. 2018;13:6249–6264. doi:10.2147/IJN.S176176
  • Wei X, Li L, Liu J, et al.. Green synthesis of fluorescent carbon dots from gynostemma for bioimaging and antioxidant in zebrafish. ACS Appl Mater Interfaces. 2019;11(10):9832–9840. doi:10.1021/acsami.9b00074
  • Li Y, Tang Z, Pan Z, et al.. Calcium-mobilizing properties of Salvia miltiorrhiza-derived carbon dots confer enhanced environmental adaptability in plants. ACS Nano. 2022;16(3):4357–4370. doi:10.1021/acsnano.1c10556
  • Zhang M, Cheng J, Luo J, et al.. Development of ecofriendly carbon dots for improving solubility and antinociceptive activity of glycyrrhizic acid. J Biomed Nanotechnol. 2021;17(4):640–651. doi:10.1166/jbn.2021.3058
  • Zhang Y, Chen Y, Bai X, et al.. Glycyrrhizae radix et rhizoma-derived carbon dots and their effect on menopause syndrome in ovariectomized mice. Molecules. 2023;28(4):1830. doi:10.3390/molecules28041830
  • Chen Y, Xiong W, Zhang Y, et al.. Carbon dots derived from os draconis and their anxiolytic effect. Int J Nanomedicine. 2022;17:4975–4988. doi:10.2147/IJN.S382112
  • Liu YY, Yu NY, Fang WD, et al.. Photodegradation of carbon dots cause cytotoxicity. Nat Commun. 2021;12(1):812. doi:10.1038/s41467-021-21080-z