174
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Rare-Earth Near-Infrared Nanoprobe for the Identification of Small Cell Lung Cancer

ORCID Icon, & ORCID Icon
Pages 5579-5590 | Received 20 Jul 2023, Accepted 25 Sep 2023, Published online: 02 Oct 2023

References

  • Houston KA, Mitchell KA, King J, White A, Ryan BM. Histologic Lung Cancer Incidence Rates and Trends vary by Race/Ethnicity and Residential County. J Thorac Oncol. 2018;13(4):497–509. doi:10.1016/j.jtho.2017.12.010
  • Miao Y, Gu C, Zhu Y, Yu B, Shen Y, Cong H. Recent Progress in Fluorescence Imaging of the Near-Infrared II Window. Chembiochem. 2018;19(24):2522–2541. doi:10.1002/cbic.201800466
  • Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17(4):375–378. doi:10.1038/7933
  • Wang M, Abbineni G, Clevenger A, Mao C, Xu S. Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomedicine. 2011;7(6):710–729. doi:10.1016/j.nano.2011.02.013
  • Hassan A, Latif MT, Soo CI, et al. Short communication: diagnosis of lung cancer increases during the annual Southeast Asian haze periods. Lung Cancer. 2017;113:1–3. doi:10.1016/j.lungcan.2017.08.025
  • Dong A, Zhang J, Chen X, Ren X, Zhang X. Diagnostic value of ProGRP for small cell lung cancer in different stages. J Thorac Dis. 2019;11(4):1182–1189. doi:10.21037/jtd.2019.04.29
  • Molina R, Filella X, Augé JM. ProGRP: a new biomarker for small cell lung cancer. Clin Biochem. 2004;37(7):505–511. doi:10.1016/j.clinbiochem.2004.05.007
  • Wojcik E, Kulpa JK. Pro-gastrin-releasing peptide (ProGRP) as a biomarker in small-cell lung cancer diagnosis, monitoring and evaluation of treatment response. Lung Cancer. 2017;8:231–240. doi:10.2147/LCTT.S149516
  • Zhou S, Jiang L, Li C, et al. Acid and Hypoxia Tandem-Activatable Deep Near-Infrared Nanoprobe for Two-Step Signal Amplification and Early Detection of Cancer. Adv Mater. 2023;35(36):e2212231. doi:10.1002/adma.202212231
  • Asha Krishnan M, Yadav K, Roach P, Chelvam V. A targeted near-infrared nanoprobe for deep-tissue penetration and imaging of prostate cancer. Biomater Sci. 2021;9(6):2295–2312. doi:10.1039/d0bm01970d
  • Zhang F, Che R, Li X, et al. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. Nano Lett. 2012;12(6):2852–2858. doi:10.1021/nl300421n
  • Li JJ, Wang YA, Guo W, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J Am Chem Soc. 2003;125(41):12567–12575. doi:10.1021/ja0363563
  • Joo J, Kim D, Yun DJ, et al. The fabrication of highly uniform ZnO/CdS core/shell structures using a spin-coating-based successive ion layer adsorption and reaction method. Nanotechnology. 2010;21(32):325604. doi:10.1088/0957-4484/21/32/325604
  • Hilderbrand SA, Weissleder R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol. 2010;14(1):71–79. doi:10.1016/j.cbpa.2009.09.029
  • Yang X, Shi C, Tong R, et al. Near IR heptamethine cyanine dye-mediated cancer imaging. Clin Cancer Res. 2010;16(10):2833–2844. doi:10.1158/1078-0432.CCR-10-0059
  • Amiot CL, Xu S, Liang S, Pan L, Zhao JX. Near-Infrared Fluorescent Materials for Sensing of Biological Targets. Sensors. 2008;8(5):3082–3105. doi:10.3390/s8053082
  • Mei X, Ma J, Bai X, et al. A bottom-up synthesis of rare-earth-hydrotalcite monolayer nanosheets toward multimode imaging and synergetic therapy. Chem Sci. 2018;9(25):5630–5639. doi:10.1039/c8sc01288a
  • Jiang R, Yang J, Meng Y, et al. X-ray/red-light excited ZGGO:Cr, Nd nanoprobes for NIR-I/II afterglow imaging. Dalton Trans. 2020;49(18):6074–6083. doi:10.1039/d0dt00247j
  • Ren Y, He S, Huttad L, et al. An NIR-II/MR dual modal nanoprobe for liver cancer imaging. Nanoscale. 2020;12(21):11510–11517. doi:10.1039/d0nr00075b
  • Wu L, Hu J, Zou Q, et al. Synthesis and optical properties of a Y 3(Al/Ga) 5 O 12:Ce 3+, Cr 3+, Nd 3+ persistent luminescence nanophosphor: a promising near-infrared-II nanoprobe for biological applications. Nanoscale. 2020;12(26):14180–14187. doi:10.1039/d0nr03269g
  • Deka S, Saxena V, Hasan A, Chandra P, Pandey LM. Synthesis, characterization and in vitro analysis of α-Fe 2 O 3-GdFeO 3 biphasic materials as therapeutic agent for magnetic hyperthermia applications. Mater Sci Eng C Mater Biol Appl. 2018;92:932–941. doi:10.1016/j.msec.2018.07.042
  • Zhang W, Zhang S, Gao P, et al. The feasibility of NaGdF 4 nanoparticles as an x-ray fluorescence computed tomography imaging probe for the liver and lungs. Med Phys. 2020;47(2):662–671. doi:10.1002/mp.13930
  • Deng X, Dai Y, Liu J, et al. Multifunctional hollow CaF2:Yb(3+)/Er(3+)/Mn(2+)-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging. Biomaterials. 2015;50:154–163. doi:10.1016/j.biomaterials.2015.01.040
  • Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotech Histochem. 1995;70(5):220–233. doi:10.3109/10520299509108199
  • Buzin AR, Pinto FE, Nieschke K, et al. Replacement of specific markers for apoptosis and necrosis by nuclear morphology for affordable cytometry. J Immunol Methods. 2015;420:24–30. doi:10.1016/j.jim.2015.03.011
  • Borowy NK, Fink E, Hirumi H. In vitro activity of the trypanocidal diamidine DAPI on animal-infective Trypanosoma brucei brucei. Acta Trop. 1985;42(4):287–298.
  • Zheng XY, Zhao K, Tang J, et al. Gd-Dots with Strong Ligand-Water Interaction for Ultrasensitive Magnetic Resonance Renography. ACS Nano. 2017;11(4):3642–3650. doi:10.1021/acsnano.6b07959
  • Liang G, Xiao L. Gd 3+-Functionalized gold nanoclusters for fluorescence-magnetic resonance bimodal imaging. Biomater Sci. 2017;5(10):2122–2130. doi:10.1039/c7bm00608j
  • Hoschek S, Hoschek-Risslegger U, Fiegl M, et al. Small cell lung cancer. Wien Klin Wochenschr. 2007;119(23–24):697–710. doi:10.1007/s00508-007-0913-1
  • Serke M, Schönfeld N. Diagnosis and staging of lung cancer. Dtsch Med Wochenschr. 2007;132(21):1165–1169. doi:10.1055/s-2007-979393
  • Cohen AS, Patek R, Enkemann SA, et al. Delta-Opioid Receptor (δOR) Targeted Near-Infrared Fluorescent Agent for Imaging of Lung Cancer: Synthesis and Evaluation In Vitro and In Vivo. Bioconjug Chem. 2016;27(2):427–438. doi:10.1021/acs.bioconjchem.5b00516
  • Wan J, Wu W, Zhang R, Liu S, Huang Y. Anti-EGFR antibody conjugated silica nanoparticles as probes for lung cancer detection. Exp Ther Med. 2017;14(4):3407–3412. doi:10.3892/etm.2017.4988
  • Ma X, Phi Van V, Kimm MA, et al. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer. Neoplasia. 2017;19(1):8–16. doi:10.1016/j.neo.2016.11.009
  • Gao Y, Zhang H, Zhang Y, et al. Erlotinib-Guided Self-Assembled Trifunctional Click Nanotheranostics for Distinguishing Druggable Mutations and Synergistic Therapy of Nonsmall Cell Lung Cancer. Mol Pharm. 2018;15(11):5146–5161. doi:10.1021/acs.molpharmaceut.8b00561
  • Lee S, George Thomas R, Ju Moon M, et al. Near-Infrared Heptamethine Cyanine Based Iron Oxide Nanoparticles for Tumor Targeted Multimodal Imaging and Photothermal Therapy. Sci Rep. 2017;7(1):2108. doi:10.1038/s41598-017-01108-5