277
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems

, , , & ORCID Icon
Pages 6883-6900 | Received 07 Sep 2023, Accepted 06 Nov 2023, Published online: 19 Nov 2023

References

  • Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–1822.
  • Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138(3):704–717.
  • Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86(3):215–223.
  • Mosquera J, García I, Liz-Marzán LM. Cellular Uptake of Nanoparticles versus Small Molecules: a Matter of Size. Acc Chem Res. 2018;51(9):2305–2313.
  • Chaudhuri A, Battaglia G, Golestanian R. The effect of interactions on the cellular uptake of nanoparticles. Phys Biol. 2011;8(4):046002.
  • Tantra R, Knight A. Cellular uptake and intracellular fate of engineered nanoparticles: a review on the application of imaging techniques. Nanotoxicology. 2011;5(3):381–392.
  • Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–4244.
  • Khan S, Mansoor S, Rafi Z, et al. A review on nanotechnology: properties, applications, and mechanistic insights of cellular uptake mechanisms. J Mol Liq. 2022;348:118008.
  • Cheng J-X, Xie XS. Vibrational spectroscopic imaging of living systems: an emerging platform for biology and medicine. Science. 2015;350(6264):aaa8870.
  • Stewart S, Priore RJ, Nelson MP, Treado PJ. Raman imaging. Ann Rev Analytical Chem. 2012;5:337–360.
  • Li W, Wei H, Li N, et al. Rapid identification and quantification of diquat in biological fluids within 30s using a portable Raman spectrometer. Biosens Bioelectron. 2023;115083.
  • Brunton VG, Lee M, Maguregui A, et al. Applications of Raman microscopy in cancer biology and drug discovery (Conference Presentation). Paper presented at: Advanced Chemical Microscopy for Life Science and Translational Medicine; 2023.
  • Zhang J, Yan S, He Z, et al. Small unnatural amino acid carried Raman tag for molecular imaging of genetically targeted proteins. J Phys Chem Lett. 2018;9(16):4679–4685.
  • Kallepitis C, Bergholt MS, Mazo MM, et al. Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun. 2017;8(1):14843.
  • Allakhverdiev ES, Khabatova VV, Kossalbayev BD, et al. Raman spectroscopy and its modifications applied to biological and medical research. Cells. 2022;11(3):386.
  • Xu S, Camp CH Jr, Lee YJ. Coherent anti‐Stokes Raman scattering microscopy for polymers. J Polymer Sci. 2022;60(7):1244–1265.
  • Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods. 2019;16(9):830–842.
  • Tipping WJ, Wilson LT, An C, et al. Stimulated Raman scattering microscopy with spectral phasor analysis: applications in assessing drug–cell interactions. Chemical Sci. 2022;13(12):3468–3476.
  • Cialla D, März A, Böhme R, et al. Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem. 2012;403(1):27–54.
  • Liu C, Weber S, Peng R, et al. Toward SERS-based therapeutic drug monitoring in clinical settings: recent developments and trends. TrAC Trends in Analytical Chem. 2023;117094.
  • Bakthavatsalam S, Dodo K, Sodeoka M. A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems. RSC Chem Biol. 2021;2(5):1415–1429.
  • El-Mashtoly SF, Petersen D, Yosef HK, et al. Label-free imaging of drug distribution and metabolism in colon cancer cells by Raman microscopy. Analyst. 2014;139(5):1155–1161.
  • Smith JP, Liu M, Lauro ML, et al. Raman hyperspectral imaging with multivariate analysis for investigating enzyme immobilization. Analyst. 2020;145(23):7571–7581.
  • Smith GPS, McGoverin CM, Fraser SJ, Gordon KC. Raman imaging of drug delivery systems. Adv Drug Deliv Rev. 2015;89:21–41.
  • Rangan S, Schulze HG, Vardaki MZ, Blades MW, Piret JM, Turner RF. Applications of Raman spectroscopy in the development of cell therapies: state of the art and future perspectives. Analyst. 2020;145(6):2070–2105.
  • Tanwar S, Paidi SK, Prasad R, Pandey R, Barman I. Advancing Raman spectroscopy from research to clinic: translational potential and challenges. Spectrochim Acta A Mol Biomol Spectrosc. 2021;260:119957.
  • Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN. Raman imaging of nanocarriers for drug delivery. Nanomaterials. 2019;9(3):341.
  • Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–951.
  • Hu G, Guo M, Xu J, et al. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol. 2019;10:1998.
  • Malik MK, Bhatt P, Kumar T, et al. Significance of chemically derivatized starch as drug carrier in developing novel drug delivery devices. Natural Products J. 2023;13(6):40–53.
  • Gao J, Karp JM, Langer R, Joshi N. The Future of Drug Delivery. Vol. 35. ACS Publications; 2023:359–363.
  • Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.
  • Han H, Li S, Xu M, et al. Polymer-and lipid-based nanocarriers for ocular drug delivery: current status and future perspectives. Adv Drug Deliv Rev. 2023;114770.
  • Lingayat VJ, Zarekar NS, Shendge RS. Solid lipid nanoparticles: a review. Nanosci Nanotechnol Res. 2017;4(2):67–72.
  • Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–142.
  • Pu Y, Fan X, Zhang Z, et al. Harnessing polymer-derived drug delivery systems for combating inflammatory bowel disease. J Controlled Release. 2023;354:1–18.
  • Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10(5):847.
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124.
  • Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS nano. 2008;2(5):889–896.
  • Osman N, Devnarain N, Omolo CA, Fasiku V, Jaglal Y, Govender T. Surface modification of nano‐drug delivery systems for enhancing antibiotic delivery and activity. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;14(1):567.
  • Shen Z, Nieh M-P, Li Y. Decorating nanoparticle surface for targeted drug delivery: opportunities and challenges. Polymers. 2016;8(3):83.
  • Foroozandeh P, Aziz AA. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res Lett. 2018;13(1):339.
  • Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer. 2023;1–24.
  • Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Ann Rev Pathol. 2012;7:61–98.
  • Dutta D, Donaldson JG. Search for inhibitors of endocytosis: intended specificity and unintended consequences. Cell Logist. 2012;2(4):203–208.
  • Uzhytchak M, Smolková B, Lunova M, et al. Lysosomal nanotoxicity: impact of nanomedicines on lysosomal function. Adv Drug Deliv Rev. 2023;114828.
  • Wang P, Wu B, Li M, et al. Lysosome-Targeting Aggregation-Induced Emission Nanoparticle Enables Adoptive Macrophage Transfer-Based Precise Therapy of Bacterial Infections. ACS nano. 2023.
  • Portilla Y, Mulens-Arias V, Paradela A, et al. The surface coating of iron oxide nanoparticles drives their intracellular trafficking and degradation in endolysosomes differently depending on the cell type. Biomaterials. 2022;281:121365.
  • Amin MO, Al-Hetlani E, Lednev IK. Detection and identification of drug traces in latent fingermarks using Raman spectroscopy. Sci Rep. 2022;12(1):3136.
  • Syed A, Smith EA. Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers. Ann Rev Analytical Chem. 2017;10(1):56.
  • Movasaghi Z, Rehman S, Rehman IU. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541.
  • Ren J, Mao S, Lin J, Xu Y, Zhu Q, Xu N. Research Progress of Raman Spectroscopy and Raman Imaging in Pharmaceutical Analysis. Curr Pharm Des. 2022;28(18):1445–1456.
  • Butler HJ, Ashton L, Bird B, et al. Using Raman spectroscopy to characterize biological materials. Nat Protoc. 2016;11(4):664–687.
  • Lohumi S, Kim MS, Qin J, Cho B-K. Raman imaging from microscopy to macroscopy: quality and safety control of biological materials. TrAC Trends in Analytical Chem. 2017;93:183–198.
  • Gaifulina R, Maher AT, Kendall C, et al. Label-free Raman spectroscopic imaging to extract morphological and chemical information from a formalin-fixed, paraffin-embedded rat colon tissue section. Int J Exp Pathol. 2016;97(4):337–350.
  • Shen Y, Hu F, Min W. Raman Imaging of Small Biomolecules. Annu Rev Biophys. 2019;48:347–369.
  • Jansen A, Kortum R Raman spectroscopy for cancer detection. Paper presented at: Proceedings-19th International Conference IEEE/EMBS, Chicago, USA 1997.
  • Utzinger U, Heintzelman DL, Mahadevan-Jansen A, Malpica A, Follen M, Richards-Kortum R. Near-infrared Raman spectroscopy for in vivo detection of cervical precancers. Appl Spectrosc. 2001;55(8):955–959.
  • Gomes da Costa S, Richter A, Schmidt U, Breuninger S, Hollricher O. Confocal Raman microscopy in life sciences. Morphologie. 2019;103(341):11–16.
  • Durrant B, Trappett M, Shipp D, Notingher I. Recent developments in spontaneous Raman imaging of living biological cells. Curr Opin Chem Biol. 2019;51:138–145.
  • Bocklitz TW, Guo S, Ryabchykov O, Vogler N, Popp J. Raman Based Molecular Imaging and Analytics: a Magic Bullet for Biomedical Applications!? Anal Chem. 2016;88(1):133–151.
  • Gierlinger N, Keplinger T, Harrington M. Imaging of plant cell walls by confocal Raman microscopy. Nat Protoc. 2012;7(9):1694–1708.
  • Zini J, Saari H, Ciana P, et al. Infrared and Raman spectroscopy for purity assessment of extracellular vesicles. Eur J Pharm Sci. 2022;172:106135.
  • Kruglik SG, Royo F, Guigner J-M, et al. Raman tweezers microspectroscopy of circa 100 nm extracellular vesicles. Nanoscale. 2019;11(4):1661–1679.
  • Rojalin T, Koster HJ, Liu J, et al. Hybrid nanoplasmonic porous biomaterial scaffold for liquid biopsy diagnostics using extracellular vesicles. ACS sensors. 2020;5(9):2820–2833.
  • Gualerzi A, Kooijmans SAA, Niada S, et al. Raman spectroscopy as a quick tool to assess purity of extracellular vesicle preparations and predict their functionality. J Extracellular Vesicles. 2019;8(1):1568780.
  • Romero G, Qiu Y, Murray RA, Moya SE. Study of Intracellular Delivery of Doxorubicin from Poly (lactide‐co‐glycolide) Nanoparticles by Means of Fluorescence Lifetime Imaging and Confocal Raman Microscopy. Macromol Biosci. 2013;13(2):234–241.
  • Romero G, Ochoteco O, Sanz DJ, Estrela‐Lopis I, Donath E, Moya SE. Poly (L actide‐co‐G lycolide) Nanoparticles, Layer by Layer Engineered for the Sustainable Delivery of AntiTNF‐α. Macromol Biosci. 2013;13(7):903–912.
  • Horgan CC, Jensen M, Nagelkerke A, et al. High-throughput molecular imaging via deep-learning-enabled Raman spectroscopy. Anal Chem. 2021;93(48):15850–15860.
  • Chen Y, Li J, Song D, et al. NWU‐RSIT: an integrated graphical user interface for biomedical Raman spectral imaging with both univariate and multivariate modules. J Raman Spectroscopy. 2021;52(8):1428–1439.
  • Yildirim T, Matthäus C, Press AT, et al. Uptake of Retinoic Acid‐Modified PMMA Nanoparticles in LX‐2 and Liver Tissue by Raman Imaging and Intravital Microscopy. Macromol Biosci. 2017;17(10):1700064.
  • Chernenko T, Buyukozturk F, Miljkovic M, Carrier R, Diem M, Amiji M. Label-free Raman microspectral analysis for comparison of cellular uptake and distribution between nontargeted and EGFR-targeted biodegradable polymeric nanoparticles. Drug Deliv Transl Res. 2013;3(6):575–586.
  • Li S, Chen T, Wang Y, et al. Conjugated polymer with intrinsic alkyne units for synergistically enhanced Raman imaging in living cells. Angewandte Chemie Int Edition. 2017;56(43):13455–13458.
  • Matthäus C, Kale A, Chernenko T, Torchilin V, Diem M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol Pharm. 2008;5(2):287–293.
  • Huang B, Yan S, Xiao L, et al. Label-Free Imaging of Nanoparticle Uptake Competition in Single Cells by Hyperspectral Stimulated Raman Scattering. Small. 2018;14(10):1703246.
  • Vanden-Hehir S, Cairns SA, Lee M, et al. Alkyne-tagged PLGA allows direct visualization of nanoparticles in vitro and ex vivo by stimulated Raman scattering microscopy. Biomacromolecules. 2019;20(10):4008–4014.
  • Hu F, Brucks SD, Lambert TH, Campos LM, Min W. Stimulated Raman scattering of polymer nanoparticles for multiplexed live-cell imaging. Chem Commun. 2017;53(46):6187–6190.
  • Tian S, Li H, Li Z, et al. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging. Nat Commun. 2020;11(1):81.
  • Huefner A, Kuan W-L, Müller KH, Skepper JN, Barker RA, Mahajan S. Characterization and visualization of vesicles in the endo-lysosomal pathway with surface-enhanced Raman spectroscopy and chemometrics. ACS nano. 2016;10(1):307–316.
  • Kapara A, Brunton V, Graham D, Faulds K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chemical Sci. 2020;11(22):5819–5829.
  • Chen H, Luo C, Yang M, Li J, Ma P, Zhang X. Intracellular uptake of and sensing with SERS-active hybrid exosomes: insight into a role of metal nanoparticles. Nanomedicine. 2020;15(9):913–926.
  • van Apeldoorn AA, van Manen H-J, Bezemer JM, de Bruijn JD, van Blitterswijk CA, Otto C. Raman Imaging of PLGA Microsphere Degradation Inside Macrophages. J Am Chem Soc. 2004;126(41):13226–13227.
  • Chernenko T, Matthäus C, Milane L, Quintero L, Amiji M, Diem M. Label-Free Raman Spectral Imaging of Intracellular Delivery and Degradation of Polymeric Nanoparticle Systems. ACS Nano. 2009;3(11):3552–3559.
  • Wei L, Hu F, Chen Z, Shen Y, Zhang L, Min W. Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes. Acc Chem Res. 2016;49(8):1494–1502.
  • Zhao Z, Shen Y, Hu F, Min W. Applications of vibrational tags in biological imaging by Raman microscopy. Analyst. 2017;142(21):4018–4029.
  • Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR. Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol. 2018;13(4):1013–1020.
  • Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN. Imaging drug uptake by bioorthogonal stimulated Raman scattering microscopy. Chemical Sci. 2017;8(8):5606–5615.
  • Dodo K, Fujita K, Sodeoka M. Raman Spectroscopy for Chemical Biology Research. J Am Chem Soc. 2022;144(43):19651–19667.
  • Zhang C, Zhang D, Cheng J-X. Coherent Raman scattering microscopy in biology and medicine. Annu Rev Biomed Eng. 2015;17:415.
  • Schie IW, Krafft C, Popp J. Applications of coherent Raman scattering microscopies to clinical and biological studies. Analyst. 2015;140(12):3897–3909.
  • Prince RC, Frontiera RR, Potma EO. Stimulated Raman scattering: from bulk to nano. Chem Rev. 2017;117(7):5070–5094.
  • Camp CH Jr, Cicerone MT. Chemically sensitive bioimaging with coherent Raman scattering. Nat Photonics. 2015;9(5):295–305.
  • Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering. ACS nano. 2019;14(1):28–117.
  • Tanwar S, Kim JH, Bulte JW, Barman I. Surface‐enhanced Raman scattering: an emerging tool for sensing cellular function. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022;e1802.
  • Zhao H, Zhang W, Liu Z, et al. Insights into the intracellular behaviors of black-phosphorus-based nanocomposites via surface-enhanced Raman spectroscopy. Nanophotonics. 2018;7(10):1651–1662.
  • De albuquerque CDL, Hokanson KM, Thorud SR, Sobral-Filho RG, Lindquist NC, Brolo AG. Dynamic imaging of multiple SERS hotspots on single nanoparticles. ACS Photonics. 2020;7(2):434–443.
  • Gregas MK, Yan F, Scaffidi J, Wang H-N, Vo-Dinh T. Characterization of nanoprobe uptake in single cells: spatial and temporal tracking via SERS labeling and modulation of surface charge. Nanomedicine. 2011;7(1):115–122.
  • Pinheiro PC, Fateixa S, Nogueira HI, Trindade T. Magnetite-supported gold nanostars for the uptake and SERS detection of tetracycline. Nanomaterials. 2018;9(1):31.
  • Jakhmola A, Krishnan S, Onesto V, et al. Sustainable synthesis and theoretical studies of polyhedral gold nanoparticles displaying high SERS activity, NIR absorption, and cellular uptake. Materials Today Chem. 2022;26:101016.
  • Huefner A, Septiadi D, Wilts BD, et al. Gold nanoparticles explore cells: cellular uptake and their use as intracellular probes. Methods. 2014;68(2):354–363.
  • Bálint Š, Rao S, Sánchez MM, Huntošová V, Miškovský P, Petrov D. Diffusion and cellular uptake of drugs in live cells studied with surface-enhanced Raman scattering probes. J Biomed Opt. 2010;15(2):027005–027007.
  • Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012;41(7):2885–2911.
  • Biju V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem Soc Rev. 2014;43(3):744–764.
  • Smith JR, Olusanya TO, Lamprou DA. Characterization of drug delivery vehicles using atomic force microscopy: current status. Expert Opin Drug Deliv. 2018;15(12):1211–1221.
  • Pardhi VP, Verma T, Flora S, Chandasana H, Shukla R. Nanocrystals: an overview of fabrication, characterization and therapeutic applications in drug delivery. Curr Pharm Des. 2018;24(43):5129–5146.
  • Si Y, Kim S, Zhang E, et al. Targeted exosomes for drug delivery: biomanufacturing, surface tagging, and validation. Biotechnol J. 2020;15(1):1900163.
  • Itoh T, Procházka M, Dong Z-C, et al. Toward a new era of SERS and TERS at the nanometer scale: from fundamentals to innovative applications. Chem Rev. 2023;123(4):1552–1634.
  • Krafft C, Dietzek B, Schmitt M, Popp J. Raman and coherent anti-Stokes Raman scattering microspectroscopy for biomedical applications. J Biomed Opt. 2012;17(4):040801.
  • Cheng J-X, Xie XS. Coherent Anti-Stokes Raman Scattering Microscopy: Instrumentation, Theory, and Applications. Vol. 108. ACS Publications; 2004:827–840.
  • Liu Y-J, Kyne M, Wang C, X-Y Y. Data mining in Raman imaging in a cellular biological system. Comput Struct Biotechnol J. 2020;18:2920–2930.
  • Liu Y-J, Kyne M, Wang S, Wang S, X-Y Y, Wang C. A User-Friendly Platform for Single-Cell Raman Spectroscopy Analysis. Spectrochim Acta A Mol Biomol Spectrosc. 2022;282:121686.
  • de Juan A, Maeder M, Hancewicz T, Duponchel L, Tauler R. Chemometric tools for image analysis. Infrared Raman Spectroscopic Imaging. 2009;1:65–106.
  • Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics Intelligent Lab Sys. 1987;2(1–3):37–52.
  • Di Mascolo D, Coclite A, Gentile F, Francardi M. Quantitative micro-Raman analysis of micro-particles in drug delivery. Nanoscale Adv. 2019;1(4):1541–1552.
  • Nascimento JMP, Dias JMB. Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE T Geosci Remote. 2005;43(4):898–910.
  • Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Networks. 2000;13(4–5):411–430.
  • Murugesan R, Raman S. Recent trends in carbon nanotubes based prostate cancer therapy: a biomedical hybrid for diagnosis and treatment. Curr Drug Deliv. 2022;19(2):229–237.
  • Felten J, Hall H, Jaumot J, Tauler R, De Juan A, Gorzsás A. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat Protoc. 2015;10(2):217.
  • Essendoubi M, Alsamad F, Noël P, et al. Combining Raman imaging and MCR‐ALS analysis for monitoring retinol permeation in human skin. Skin Res Technol. 2021;27(6):1100–1109.
  • Li M, Nawa Y, Ishida S, Kanda Y, Fujita S, Fujita K. Label-free chemical imaging of cytochrome P450 activity by Raman microscopy. Commun Biol. 2022;5(1):778.
  • Prats-Mateu B, Felhofer M, de Juan A, Gierlinger N. Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results? Plant Methods. 2018;14(1):1–20.
  • Chernenko T, Sawant R, Miljkovic M, Quintero L, Diem M, Torchilin V. Raman microscopy for noninvasive imaging of pharmaceutical nanocarriers: intracellular distribution of cationic liposomes of different composition. Mol Pharm. 2012;9(4):930–936.