510
Views
2
CrossRef citations to date
0
Altmetric
REVIEW

Advances in Formulations of Microneedle System for Rheumatoid Arthritis Treatment

, , , , , , , , & ORCID Icon show all
Pages 7759-7784 | Received 08 Sep 2023, Accepted 05 Dec 2023, Published online: 17 Dec 2023

References

  • McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–2337. doi:10.1016/s0140-6736(17)31472-1
  • Wang Q, Qin X, Fang J, Sun X. Nanomedicines for the treatment of rheumatoid arthritis: state of art and potential therapeutic strategies. Acta Pharmaceutica Sinica B. 2021;11(5):1158–1174. doi:10.1016/j.apsb.2021.03.013
  • Catrina AI, Svensson CI, Malmstrom V, Schett G, Klareskog L. Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis. Nat Rev Rheumatol. 2017;13(2):79–86. doi:10.1038/nrrheum.2016.200
  • Thakur S, Riyaz B, Patil A, Kaur A, Kapoor B, Mishra V. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: an overview. Biomed Pharmacother. 2018;106:1011–1023. doi:10.1016/j.biopha.2018.07.027
  • Krishnamurthy A, Joshua V, Haj Hensvold A, et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis. 2016;75(4):721–729. doi:10.1136/annrheumdis-2015-208093
  • Patakas A, R-r J, Weir W, et al. Abatacept inhibition of T cell priming in mice by induction of a unique transcriptional profile that reduces their ability to activate antigen-presenting cells. Arthritis Rheumatol. 2016;68(3):627–638. doi:10.1002/art.39470
  • Mueller AL, Payandeh Z, Mohammadkhani N, et al. Recent advances in understanding the pathogenesis of rheumatoid arthritis: new treatment strategies. Cells. 2021;10(11):3017. doi:10.3390/cells10113017
  • Nooreen R, Nene S, Jain H, et al. Polymer nanotherapeutics: a versatile platform for effective rheumatoid arthritis therapy. J Control Release. 2022;348:397–419. doi:10.1016/j.jconrel.2022.05.054
  • Shreya AB, Raut SY, Managuli RS, Udupa N, Mutalik S. Active targeting of drugs and bioactive molecules via oral administration by ligand-conjugated lipidic nanocarriers: recent advances. AAPS PharmSciTech. 2018;20(1):15. doi:10.1208/s12249-018-1262-2
  • Anil U, Markus DH, Hurley ET, et al. The efficacy of intra-articular injections in the treatment of knee osteoarthritis: a network meta-analysis of randomized controlled trials. Knee. 2021;32:173–182. doi:10.1016/j.knee.2021.08.008
  • McNicol ED, Ferguson MC, Schumann R. Single-dose intravenous diclofenac for acute postoperative pain in adults. Cochrane Database Syst Rev. 2018;8:CD012498. doi:10.1002/14651858.CD012498.pub2
  • Chen J, Zeng S, Xue Q, et al. Photoacoustic image-guided biomimetic nanoparticles targeting rheumatoid arthritis. Proc Natl Acad Sci U S A. 2022;119(43):e2213373119. doi:10.1073/pnas.2213373119
  • Chen J, Qi J, Chen C, et al. Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis. Adv Mater. 2020;32(37):e2003399. doi:10.1002/adma.202003399
  • Chen J, Tan J, Li J, et al. Genetically engineered biomimetic nanoparticles for targeted delivery of mRNA to treat rheumatoid arthritis. Small Methods. 2023;7(11):e2300678. doi:10.1002/smtd.202300678
  • Zoudani EL, Soltani M. A new computational method of modeling and evaluation of dissolving microneedle for drug delivery applications: extension to theoretical modeling of a novel design of microneedle (array in array) for efficient drug delivery. Eur J Pharm Sci. 2020;150:105339. doi:10.1016/j.ejps.2020.105339
  • Pireddu R, Schlich M, Marceddu S, et al. Nanosuspensions and microneedles roller as a combined approach to enhance diclofenac topical bioavailability. Pharmaceutics. 2020;12(12):1140. doi:10.3390/pharmaceutics12121140
  • Jacobse J, Ten Voorde W, Tandon A, et al. Comprehensive evaluation of microneedle-based intradermal Adalimumab delivery vs. subcutaneous administration: results of a randomized controlled clinical trial. Br J Clin Pharmacol. 2021;87(8):3162–3176. doi:10.1111/bcp.14729
  • Du G, He P, Zhao J, et al. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J Control Release. 2021;336:537–548. doi:10.1016/j.jconrel.2021.07.005
  • Chang H, Chew SWT, Zheng M, et al. Cryomicroneedles for transdermal cell delivery. Nat Biomed Eng. 2021;5(9):1008–1018. doi:10.1038/s41551-021-00720-1
  • Zhang C, Li J, Xiao M, et al. Oral colon-targeted mucoadhesive micelles with enzyme-responsive controlled release of curcumin for ulcerative colitis therapy. Chin. Chem. Lett. 2022. doi:10.1016/j.cclet.2022.03.110
  • Cahill EM, O’Cearbhaill ED, Cahill EM, O’Cearbhaill ED. Toward biofunctional microneedles for stimulus responsive drug delivery. Bioconjug Chem. 2015;26(7):1289–1296. doi:10.1021/acs.bioconjchem.5b00211
  • Moffatt K, Wang Y, Raj Singh TR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14–21. doi:10.1016/j.coph.2017.07.007
  • Gomaa YA, Garland MJ, McInnes F, El-Khordagui LK, Wilson C, Donnelly RF. Laser-engineered dissolving microneedles for active transdermal delivery of nadroparin calcium. Eur J Pharm Biopharm. 2012;82(2):299–307. doi:10.1016/j.ejpb.2012.07.008
  • Tucak A, Sirbubalo M, Hindija L, et al. Microneedles: characteristics, materials, production methods and commercial development. Micromachines. 2020;11(11):961. doi:10.3390/mi11110961
  • Evens T, Malek O, Castagne S, Seveno D, Van Bael A. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf Lett. 2020;24:29–32. doi:10.1016/j.mfglet.2020.03.009
  • McGrath MG, Vucen S, Vrdoljak A, et al. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86(2):200–211. doi:10.1016/j.ejpb.2013.04.023
  • Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release. 2005;104(1):51–66. doi:10.1016/j.jconrel.2005.02.002
  • Barnum L, Quint J, Derakhshandeh H, et al. 3D-printed hydrogel-filled microneedle arrays. Adv Healthc Mater. 2021;10(13):e2001922. doi:10.1002/adhm.202001922
  • Held J, Gaspar J, Ruther P, et al. Design of experiment characterization of microneedle fabrication processes based on dry silicon etching. J Micromech Microeng. 2010;20(2):025024. doi:10.1088/0960-1317/20/2/025024
  • Izumi H, Aoyagi S. Novel fabrication method for long silicon microneedles with three-dimensional sharp tips and complicated shank shapes by isotropic dry etching. IEEJ Trans ElectrElectron Eng. 2007;2(3):328–334. doi:10.1002/tee.20147
  • Wang R, Wang W, Li Z. An improved manufacturing approach for discrete silicon microneedle arrays with tunable height-pitch ratio. Sensors. 2016;16(10). doi:10.3390/s16101628
  • Donnelly RF, Majithiya R, Singh TR, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28(1):41–57. doi:10.1007/s11095-010-0169-8
  • Dardano P, Calio A, Di Palma V, Bevilacqua MF, Di Matteo A, De Stefano L. A photolithographic approach to polymeric microneedles array fabrication. Materials. 2015;8(12):8661–8673. doi:10.3390/ma8125484
  • Equbal A, Sood AK. Electroless plating of copper on different shaped ABS parts: a comparison. Int J Adv Mater Manuf Charact. 2014;4(1):32–41. doi:10.11127/ijammc.2014.03.05
  • Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng. 2011;88(8):1681–1684. doi:10.1016/j.mee.2010.12.067
  • Ye R, Yang J, Li Y, et al. Fabrication of tip-hollow and tip-dissolvable microneedle arrays for transdermal drug delivery. ACS Biomater Sci Eng. 2020;6(4):2487–2494. doi:10.1021/acsbiomaterials.0c00120
  • Hsu W-L, Huang C-Y, Hsu Y-P, et al. On-skin glucose-biosensing and on-demand insulin-zinc hexamers delivery using microneedles for syringe-free diabetes management. Chem Eng J. 2020;398:125536. doi:10.1016/j.cej.2020.125536
  • Zhou P, Zhao S, Huang C, Qu Y, Zhang C. Bletilla striata polysaccharide microneedle for effective transdermal administration of model protein antigen. Int J Biol Macromol. 2022;205:511–519. doi:10.1016/j.ijbiomac.2022.02.116
  • He Y, Chen Z, Nie X, et al. Recent advances in polysaccharides from edible and medicinal Polygonati rhizoma: from bench to market. Int J Biol Macromol. 2022;195:102–116. doi:10.1016/j.ijbiomac.2021.12.010
  • Zhang C, Wang X, Xiao M, et al. Nano-in-micro alginate/chitosan hydrogel via electrospray technology for orally curcumin delivery to effectively alleviate ulcerative colitis. Mater Des. 2022;221:110894. doi:10.1016/j.matdes.2022.110894
  • Chang H, Zheng M, Yu X, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29(37). doi:10.1002/adma.201702243
  • Lim H, Ha S, Bae M, Yoon SH. A highly robust approach to fabricate the mass-customizable mold of sharp-tipped biodegradable polymer microneedles for drug delivery. Int J Pharm. 2021;600:120475. doi:10.1016/j.ijpharm.2021.120475
  • Yadav PR, Munni MN, Campbell L, et al. Translation of polymeric microneedles for treatment of human diseases: recent trends, progress, and challenges. Pharmaceutics. 2021;13(8):1132. doi:10.3390/pharmaceutics13081132
  • Wang M, Hu L, Xu C. Recent advances in the design of polymeric microneedles for transdermal drug delivery and biosensing. Lab Chip. 2017;17(8):1373–1387. doi:10.1039/c7lc00016b
  • Waghule T, Singhvi G, Dubey SK, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–1258. doi:10.1016/j.biopha.2018.10.078
  • Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control Release. 2017;260:164–182. doi:10.1016/j.jconrel.2017.05.029
  • Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23. doi:10.1016/j.jconrel.2017.02.011
  • van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release. 2012;161(2):645–655. doi:10.1016/j.jconrel.2012.01.042
  • Sivamani RK, Stoeber B, Liepmann D, Maibach HI. Microneedle penetration and injection past the stratum corneum in humans. J Dermatol Treat. 2009;20(3):156–159. doi:10.1080/09546630802512679
  • Wu Y, Qiu Y, Zhang S, Qin G, Gao Y. Microneedle-based drug delivery: studies on delivery parameters and biocompatibility. Biomed Microdevices. 2008;10(5):601–610. doi:10.1007/s10544-008-9171-x
  • Ruan S, Zhang Y, Feng N. Microneedle-mediated transdermal nanodelivery systems: a review. Biomater Sci. 2021;9(24):8065–8089. doi:10.1039/d1bm01249e
  • Ilic T, Savic S, Batinic B, et al. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: in vitro and in vivo studies. Eur J Pharm Sci. 2018;125:110–119. doi:10.1016/j.ejps.2018.09.023
  • Shu W, Heimark H, Bertollo N, Tobin DJ, O’Cearbhaill ED, Annaidh AN. Insights into the mechanics of solid conical microneedle array insertion into skin using the finite element method. Acta Biomater. 2021;135:403–413. doi:10.1016/j.actbio.2021.08.045
  • Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25(1):104–113. doi:10.1007/s11095-007-9350-0
  • Wei-Ze L, Mei-Rong H, Jian-Ping Z, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. Int J Pharm. 2010;389(1–2):122–129. doi:10.1016/j.ijpharm.2010.01.024
  • Sabri A, Ogilvie J, McKenna J, Segal J, Scurr D, Marlow M. Intradermal Delivery of an Immunomodulator for basal cell carcinoma; expanding the mechanistic insight into solid microneedle-enhanced delivery of hydrophobic molecules. Mol Pharm. 2020;17(8):2925–2937. doi:10.1021/acs.molpharmaceut.0c00347
  • Zhang L, Guo R, Wang S, Yang X, Ling G, Zhang P. Fabrication, evaluation and applications of dissolving microneedles. Int J Pharm. 2021;604:120749. doi:10.1016/j.ijpharm.2021.120749
  • Pukfukdee P, Banlunara W, Rutwaree T, et al. Solid composite material for delivering viable cells into skin tissues via detachable dissolvable microneedles. ACS Appl. Bio Mater. 2020;3(7):4581–4589. doi:10.1021/acsabm.0c00498
  • Witting M, Obst K, Pietzsch M, Friess W, Hedtrich S. Feasibility study for intraepidermal delivery of proteins using a solid microneedle array. Int J Pharm. 2015;486(1–2):52–58. doi:10.1016/j.ijpharm.2015.03.046
  • Abiandu I, Ita K. Transdermal delivery of potassium chloride with solid microneedles. J Drug Delivery Sci Technol. 2019;53:101216. doi:10.1016/j.jddst.2019.101216
  • Makvandi P, Kirkby M, Hutton ARJ, et al. Engineering microneedle patches for improved penetration: analysis, skin models and factors affecting needle insertion. Nanomicro Lett. 2021;13(1):93. doi:10.1007/s40820-021-00611-9
  • Gill HS, Prausnitz MR. Coated microneedles for transdermal delivery. J Control Release. 2007;117(2):227–237. doi:10.1016/j.jconrel.2006.10.017
  • Pearton M, Saller V, Coulman SA, et al. Microneedle delivery of plasmid DNA to living human skin: formulation coating, skin insertion and gene expression. J Control Release. 2012;160(3):561–569. doi:10.1016/j.jconrel.2012.04.005
  • Vinayakumar KB, Hegde GM, Nayak MM, Dinesh NS, Rajanna K. Fabrication and characterization of gold coated hollow silicon microneedle array for drug delivery. Microelectron Eng. 2014;128:12–18. doi:10.1016/j.mee.2014.05.039
  • Koutsonanos DG, Del Pilar Martin M, Zarnitsyn VG, et al. Transdermal influenza immunization with vaccine-coated microneedle arrays. PLoS One. 2009;4(3):e4773. doi:10.1371/journal.pone.0004773
  • Ranganayakulu SV, Kucheludu A, Veera Bhadraiah B, Ramesh Kumar B. Defect location and sizing by ultrasonic phased array on aero grade material aluminum He-15. Int J Adv Mater Manuf Charact. 2014;4(1):47–50. doi:10.11127/ijammc.2014.03.07
  • Zhou P, Chen C, Yue X, et al. Strategy for osteoarthritis therapy: improved the delivery of triptolide using liposome-loaded dissolving microneedle arrays. Int J Pharm. 2021;609:121211. doi:10.1016/j.ijpharm.2021.121211
  • Jing Q, Ruan H, Li J, et al. Keratinocyte membrane-mediated nanodelivery system with dissolving microneedles for targeted therapy of skin diseases. Biomaterials. 2021;278:121142. doi:10.1016/j.biomaterials.2021.121142
  • Ita K. Dissolving microneedles for transdermal drug delivery: advances and challenges. Biomed Pharmacother. 2017;93:1116–1127. doi:10.1016/j.biopha.2017.07.019
  • Vora LK, Donnelly RF, Larraneta E, Gonzalez-Vazquez P, Thakur RRS, Vavia PR. Novel bilayer dissolving microneedle arrays with concentrated PLGA nano-microparticles for targeted intradermal delivery: proof of concept. J Control Release. 2017;265:93–101. doi:10.1016/j.jconrel.2017.10.005
  • Li Z, He Y, Deng L, Zhang ZR, Lin Y. A fast-dissolving microneedle array loaded with chitosan nanoparticles to evoke systemic immune responses in mice. J Mater Chem B. 2020;8(2):216–225. doi:10.1039/c9tb02061f
  • Lin S, Quan G, Hou A, et al. Strategy for hypertrophic scar therapy: improved delivery of triamcinolone acetonide using mechanically robust tip-concentrated dissolving microneedle array. J Control Release. 2019;306:69–82. doi:10.1016/j.jconrel.2019.05.038
  • Szeto B, Aksit A, Valentini C, et al. Novel 3D-printed hollow microneedles facilitate safe, reliable, and informative sampling of perilymph from Guinea pigs. Hear Res. 2021;400:108141. doi:10.1016/j.heares.2020.108141
  • Ingrole RSJ, Azizoglu E, Dul M, Birchall JC, Gill HS, Prausnitz MR. Trends of microneedle technology in the scientific literature, patents, clinical trials and internet activity. Biomaterials. 2021;267:120491. doi:10.1016/j.biomaterials.2020.120491
  • Yadav V, Sharma PK, Murty US, et al. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm. 2021;605:120815. doi:10.1016/j.ijpharm.2021.120815
  • Kato N, Kawashima T, Shibata T, Mineta T, Makino E. Micromachining of a newly designed AFM probe integrated with hollow microneedle for cellular function analysis. Microelectron Eng. 2010;87(5–8):1185–1189. doi:10.1016/j.mee.2009.12.025
  • Angkawinitwong U, Courtenay AJ, Rodgers AM, et al. A novel transdermal protein delivery strategy via electrohydrodynamic coating of PLGA Microparticles onto microneedles. ACS Appl Mater Interfaces. 2020;12(11):12478–12488. doi:10.1021/acsami.9b22425
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev. 2012;64(14):1547–1568. doi:10.1016/j.addr.2012.04.005
  • Migdadi EM, Courtenay AJ, Tekko IA, et al. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release. 2018;285:142–151. doi:10.1016/j.jconrel.2018.07.009
  • Turner JG, White LR, Estrela P, Leese HS. Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci. 2021;21(2):e2000307. doi:10.1002/mabi.202000307
  • Mansoor I, Lai J, Ranamukhaarachchi S, et al. A microneedle-based method for the characterization of diffusion in skin tissue using doxorubicin as a model drug. Biomed Microdevices. 2015;17(3):9967. doi:10.1007/s10544-015-9967-4
  • Du H, Liu P, Zhu J, et al. Hyaluronic acid-based dissolving microneedle patch loaded with methotrexate for improved treatment of psoriasis. ACS Appl Mater Interfaces. 2019;11(46):43588–43598. doi:10.1021/acsami.9b15668
  • Yang S-J, Jeong J-O, Lim Y-M, Park J-S. Synthesis and characterization of PVP microneedle patch using metal bioelectrodes for novel drug delivery system. Mater Des. 2021;201:109485. doi:10.1016/j.matdes.2021.109485
  • Yu K, Yu X, Cao S, et al. Layered dissolving microneedles as a need-based delivery system to simultaneously alleviate skin and joint lesions in psoriatic arthritis. Acta Pharm Sin B. 2021;11(2):505–519. doi:10.1016/j.apsb.2020.08.008
  • Wang P-C, Paik S-J, Kim S-H, Allen MG. Hypodermic-needle-like hollow polymer microneedle array: fabrication and characterization. J Microelectromech Syst. 2014;23(4):991–998. doi:10.1109/jmems.2014.2307320
  • Saha I, Rai VK. Hyaluronic acid based microneedle array: recent applications in drug delivery and cosmetology. Carbohydr Polym. 2021;267:118168. doi:10.1016/j.carbpol.2021.118168
  • Wang C, Liu S, Xu J, et al. Dissolvable microneedles based on Panax notoginseng polysaccharide for transdermal drug delivery and skin dendritic cell activation. Carbohydr Polym. 2021;268:118211. doi:10.1016/j.carbpol.2021.118211
  • Pei P, Yang F, Liu J, et al. Composite-dissolving microneedle patches for chemotherapy and photothermal therapy in superficial tumor treatment. Biomater Sci. 2018;6(6):1414–1423. doi:10.1039/c8bm00005k
  • Han T, Das DB. Potential of combined ultrasound and microneedles for enhanced transdermal drug permeation: a review. Eur J Pharm Biopharm. 2015;89:312–328. doi:10.1016/j.ejpb.2014.12.020
  • Ali R, Mehta P, Arshad MS, Kucuk I, Chang MW, Ahmad Z. Transdermal microneedles-A materials perspective. AAPS PharmSciTech. 2019;21(1):12. doi:10.1208/s12249-019-1560-3
  • Wang Q, Yao G, Dong P, et al. Investigation on fabrication process of dissolving microneedle arrays to improve effective needle drug distribution. Eur J Pharm Sci. 2015;66:148–156. doi:10.1016/j.ejps.2014.09.011
  • Al Sulaiman D, Chang JYH, Bennett NR, et al. Hydrogel-coated microneedle arrays for minimally invasive sampling and sensing of specific circulating nucleic acids from skin interstitial fluid. ACS Nano. 2019;13(8):9620–9628. doi:10.1021/acsnano.9b04783
  • Gupta J, Park SS, Bondy B, Felner EI, Prausnitz MR. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials. 2011;32(28):6823–6831. doi:10.1016/j.biomaterials.2011.05.061
  • Strambini LM, Longo A, Scarano S, et al. Self-powered microneedle-based biosensors for pain-free high-accuracy measurement of glycaemia in interstitial fluid. Biosens Bioelectron. 2015;66:162–168. doi:10.1016/j.bios.2014.11.010
  • Sezgin B, Ozel B, Bulam H, Guney K, Tuncer S, Cenetoglu S. The effect of microneedle thickness on pain during minimally invasive facial procedures: a clinical study. Aesthet Surg J. 2014;34(5):757–765. doi:10.1177/1090820X14532941
  • Wu C, Cheng J, Li W, Yang L, Dong H, Zhang X. Programmable polymeric microneedles for combined chemotherapy and antioxidative treatment of rheumatoid arthritis. ACS Appl Mater Interfaces. 2021;13(46):55559–55568. doi:10.1021/acsami.1c17375
  • Li Y, Sun Y, Wei S, Zhang L, Zong S. Development and evaluation of tofacitinib transdermal system for the treatment of rheumatoid arthritis in rats. Drug Dev Ind Pharm. 2021;47(6):878–886. doi:10.1080/03639045.2021.1916521
  • Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine. 2014;32(16):1856–1862. doi:10.1016/j.vaccine.2014.01.076
  • Guo T, Zhang Y, Li Z, Zhao J, Feng N. Microneedle-mediated transdermal delivery of nanostructured lipid carriers for alkaloids from Aconitum sinomontanum. Artif Cells Nanomed Biotechnol. 2018;46(8):1541–1551. doi:10.1080/21691401.2017.1376676
  • Chen G, Hao B, Ju D, et al. Pharmacokinetic and pharmacodynamic study of triptolide-loaded liposome hydrogel patch under microneedles on rats with collagen-induced arthritis. Acta Pharm Sin B. 2015;5(6):569–576. doi:10.1016/j.apsb.2015.09.006
  • Cui Y, Mo Y, Zhang Q, et al. Microneedle-assisted percutaneous delivery of paeoniflorin-loaded ethosomes. Molecules. 2018;23(12):3371. doi:10.3390/molecules23123371
  • Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci. 2017;104:114–123. doi:10.1016/j.ejps.2017.04.001
  • Chen J, Huang W, Huang Z, et al. Fabrication of tip-dissolving microneedles for transdermal drug delivery of meloxicam. AAPS PharmSciTech. 2018;19(3):1141–1151. doi:10.1208/s12249-017-0926-7
  • Cao J, Zhang N, Wang Z, et al. Microneedle-assisted transdermal delivery of etanercept for rheumatoid arthritis treatment. Pharmaceutics. 2019;11(5):235. doi:10.3390/pharmaceutics11050235
  • Yao W, Tao C, Zou J, et al. Flexible two-layer dissolving and safing microneedle transdermal of neurotoxin: a biocomfortable attempt to treat Rheumatoid Arthritis. Int J Pharm. 2019;563:91–100. doi:10.1016/j.ijpharm.2019.03.033
  • Shende P, Salunke M. Transepidermal microneedles for co-administration of folic acid with methotrexate in the treatment of rheumatoid arthritis. Biomed Phys Eng Express. 2019;5(2):025023. doi:10.1088/2057-1976/aafbbb
  • Zhao M, Bai J, Lu Y, et al. Anti-arthritic effects of microneedling with bee venom gel. J Tradit Chin Med. 2016;3(4):256–262. doi:10.1016/j.jtcms.2016.09.005
  • Chen Z, Han B, Liao L, et al. Enhanced transdermal delivery of polydatin via a combination of inclusion complexes and dissolving microneedles for treatment of acute gout arthritis. J Drug Delivery Sci Technol. 2020;55:101487. doi:10.1016/j.jddst.2019.101487
  • Shu Z, Cao Y, Tao Y, et al. Polyvinylpyrrolidone microneedles for localized delivery of sinomenine hydrochloride: preparation, release behavior of in vitro & in vivo, and penetration mechanism. Drug Deliv. 2020;27(1):642–651. doi:10.1080/10717544.2020.1754524
  • Guo T, Cheng N, Zhao J, Hou X, Zhang Y, Feng N. Novel nanostructured lipid carriers-loaded dissolving microneedles for controlled local administration of aconitine. Int J Pharm. 2019;572:118741. doi:10.1016/j.ijpharm.2019.118741
  • Song X, Wang Y, Chen H, et al. Dosage-efficacy relationship and pharmacodynamics validation of brucine dissolving microneedles against rheumatoid arthritis. J Drug Delivery Sci Technol. 2021;63:102537. doi:10.1016/j.jddst.2021.102537
  • Hu H, Ruan H, Ruan S, et al. Acid-responsive PEGylated branching PLGA nanoparticles integrated into dissolving microneedles enhance local treatment of arthritis. Chem Eng J. 2022;431:134196. doi:10.1016/j.cej.2021.134196
  • Qiu Y, Li C, Zhang S, Yang G, He M, Gao Y. Systemic delivery of artemether by dissolving microneedles. Int J Pharm. 2016;508(1–2):1–9. doi:10.1016/j.ijpharm.2016.05.006
  • Tekko IA, Chen G, Dominguez-Robles J, et al. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm. 2020;586:119580. doi:10.1016/j.ijpharm.2020.119580
  • Cao J, Su J, An M, et al. Novel DEK-targeting aptamer delivered by a hydrogel microneedle attenuates collagen-induced arthritis. Mol Pharm. 2021;18(1):305–316. doi:10.1021/acs.molpharmaceut.0c00954
  • Chong RH, Gonzalez-Gonzalez E, Lara MF, et al. Gene silencing following siRNA delivery to skin via coated steel microneedles: in vitro and in vivo proof-of-concept. J Control Release. 2013;166(3):211–219. doi:10.1016/j.jconrel.2012.12.030
  • Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: recent advances. Biotechnol Adv. 2021;48:107727. doi:10.1016/j.biotechadv.2021.107727
  • Jia M, Deng C, Luo J, et al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats. Int J Pharm. 2018;540(1–2):57–64. doi:10.1016/j.ijpharm.2018.02.001
  • Luo Y, Li J, Hu Y, et al. Injectable thermo-responsive nano-hydrogel loading triptolide for the anti-breast cancer enhancement via localized treatment based on ”two strikes” effects. Acta Pharm Sin B. 2020;10(11):2227–2245. doi:10.1016/j.apsb.2020.05.011
  • Bello AE, Perkins EL, Jay R, Efthimiou P. Recommendations for optimizing methotrexate treatment for patients with rheumatoid arthritis. Open Access Rheumatol. 2017;9:67–79. doi:10.2147/OARRR.S131668
  • Jacobse J, Ten Voorde W, Rissmann R, Burggraaf J, Ten Cate R, Schrier L. The effect of repeated methotrexate injections on the quality of life of children with rheumatic diseases. Eur J Pediatr. 2019;178(1):17–20. doi:10.1007/s00431-018-3286-8
  • Branco JC, Barcelos A, de Araujo FP, et al. Utilization of subcutaneous methotrexate in rheumatoid arthritis patients after failure or intolerance to oral methotrexate: a multicenter cohort study. Adv Ther. 2016;33(1):46–57. doi:10.1007/s12325-015-0276-3
  • Braun J, Kastner P, Flaxenberg P, et al. Comparison of the clinical efficacy and safety of subcutaneous versus oral administration of methotrexate in patients with active rheumatoid arthritis: results of a six-month, multicenter, randomized, double-blind, controlled, Phase IV trial. Arthritis Rheum. 2008;58(1):73–81. doi:10.1002/art.23144
  • Klein A, Kaul I, Foeldvari I, Ganser G, Urban A, Horneff G. Efficacy and safety of oral and parenteral methotrexate therapy in children with juvenile idiopathic arthritis: an observational study with patients from the German Methotrexate Registry. Arthritis Care Res. 2012;64(9):1349–1356. doi:10.1002/acr.21697
  • Rohr MK, Mikuls TR, Cohen SB, Thorne JC, O’Dell JR. Underuse of methotrexate in the treatment of rheumatoid arthritis: a national analysis of prescribing practices in the US. Arthritis Care Res. 2017;69(6):794–800. doi:10.1002/acr.23152
  • Nguyen HX, Banga AK. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharm Res. 2018;35(3):68. doi:10.1007/s11095-018-2369-6
  • Lu Y, Xiao T, Lai R, et al. Co-delivery of loxoprofen and tofacitinib by photothermal microneedles for rheumatoid arthritis treatment. Pharmaceutics. 2023;15(5):1500. doi:10.3390/pharmaceutics15051500
  • Cai L, Chen WN, Li R, Hu CM, Lei C, Li CM. Therapeutic effect of Acetazolamide, an aquaporin 1 inhibitor, on adjuvant-induced arthritis in rats by inhibiting NF-kappaB signal pathway. Immunopharmacol Immunotoxicol. 2018;40(2):117–125. doi:10.1080/08923973.2017.1417998
  • da Fonseca LJS, Nunes-Souza V, Goulart MOF, Rabelo LA. Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies. Oxid Med Cell Longev. 2019;2019:7536805. doi:10.1155/2019/7536805
  • Kocabas H, Kocabas V, Buyukbas S, Salli A, Ugurlu H. Relationship of cellular oxidant and antioxidant status with disease activity in patients with rheumatoid arthritis. Turk J Rheumatol. 2010;25(3):141–146. doi:10.5152/tjr.2010.18
  • Centre for Human Drug Research, Netherlands. NCT03607903: Adalimumab Microneedles in Healthy Volunteers. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/study/NCT03607903. Accessed 13 December 2023.
  • Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep. 2016;104:1–32. doi:10.1016/j.mser.2016.03.001
  • Luo Z, Wang Y, Li J, Wang J, Yu Y, Zhao Y. Tailoring hyaluronic acid hydrogels for biomedical applications. Adv Funct Mater. 2023. doi:10.1002/adfm.202306554
  • Li S, Wang X, Yan Z, et al. Microneedle patches with antimicrobial and immunomodulating properties for infected wound healing. Adv Sci. 2023;10(22):e2300576. doi:10.1002/advs.202300576
  • Chen BZ, Liu JL, Li QY, et al. Safety evaluation of solid polymer microneedles in human volunteers at different application sites. ACS Appl Bio Mater. 2019;2(12):5616–5625. doi:10.1021/acsabm.9b00700