211
Views
1
CrossRef citations to date
0
Altmetric
REVIEW

Reactive Oxygen Species Scavenging Nanozymes: Emerging Therapeutics for Acute Liver Injury Alleviation

, , , , ORCID Icon, ORCID Icon, & show all
Pages 7901-7922 | Received 13 Sep 2023, Accepted 05 Dec 2023, Published online: 21 Dec 2023

References

  • Yu Y, Mao Y, Chen C, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int. 2017;11:221–241. doi:10.1007/s12072-017-9793-2
  • Kubes P, Jenne C. Immune responses in the liver. Annu Rev Immunol. 2018;36:247–277. doi:10.1146/annurev-immunol-051116-052415
  • Weaver R, Blomme E, Chadwick A, et al. Managing the challenge of drug-induced liver injury: a roadmap for the development and deployment of preclinical predictive models. Nat Rev Drug Discov. 2020;19:131–148. doi:10.1038/s41573-019-0048-x
  • Garcia-Cortes M, Robles-Diaz M, Stephens C, et al. Drug induced liver injury: an update. Arch Toxicol. 2020;94:3381–3407. doi:10.1007/s00204-020-02885-1
  • Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40:998–1004. doi:10.1111/liv.14435
  • Gao L, Zhou Y, Zhong W, et al. Caveolin-1 is essential for protecting against binge drinking-induced liver damage through inhibiting reactive nitrogen species. Hepatology. 2014;60:687–699. doi:10.1002/hep.27162
  • Gobut H, Kucuk A, Sengel N, et al. Effects of cerium oxide (CeO2) on liver tissue in liver ischemia-reperfusion injury in rats undergoing desflurane anesthesia. BMC Anesthesiol. 2023;23:40. doi:10.1186/s12871-023-01999-0
  • Wu X, Liu S, Zhu H, et al. Scavenging ROS to alleviate acute liver injury by ZnO-NiO@COOH. Adv Sci. 2022;9. doi:10.1002/advs.202103982
  • Stravitz R, Lee W. Acute liver failure. Lancet. 2019;394:869–881. doi:10.1016/S0140-6736(19)31894-X
  • Yan M, Huo Y, Yin S, et al. Mechanisms of Acetaminophen-induced liver injury and its implications for therapeutic interventions. Redox Biol. 2018;17:274–283. doi:10.1016/j.redox.2018.04.019
  • Liu M, Huang Q, Zhu Y, et al. Harnessing reactive oxygen/nitrogen species and inflammation: nanodrugs for liver injury. Mater Today Bio. 2022;13:100215. doi:10.1016/j.mtbio.2022.100215
  • Jaeschke H, Akakpo J, Umbaugh D, et al. Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol Sci. 2020;174:159–167. doi:10.1093/toxsci/kfaa002
  • Liu T, Xiao B, Xiang F, et al. Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases. Nat Commun. 2020;11:2788. doi:10.1038/s41467-020-16544-7
  • Zhao S, Duan H, Yang Y, et al. Fenozyme protects the integrity of the blood–brain barrier against experimental cerebral malaria. Nano Lett. 2019;19:8887–8895. doi:10.1021/acs.nanolett.9b03774
  • Huang X, He D, Pan Z, et al. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater Today Bio. 2021;11. doi:10.1016/j.mtbio.2021.100124
  • Wang B, He X, Zhang Z, et al. Metabolism of nanomaterials in vivo: blood circulation and organ clearance. Acc Chem Res. 2013;46:761–769. doi:10.1021/ar2003336
  • Wilhelm S, Tavares A, Dai Q, et al. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:1–12. doi:10.1038/natrevmats.2016.14
  • Jenne C, Kubes P. Immune surveillance by the liver. Nat Immunol. 2013;14:996–1006. doi:10.1038/ni.2691
  • Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care. 2001;7:99–104. doi:10.1097/00075198-200104000-00008
  • Hu M, Huang L. Nanomaterial manipulation of immune microenvironment in the diseased liver. Adv Funct Mater. 2019;29:1805760. doi:10.1002/adfm.201805760
  • de Almeida M, Susnik E, Drasler B, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50:5397–5434. doi:10.1039/d0cs01127d
  • Yuan X, Zhou Y, Sun J, et al. Preventing acute liver injury via hepatocyte-targeting nano-antioxidants. Cell Proliferat. 2023;56. doi:10.1111/cpr.13494
  • Nathan C, Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013;13:349–361. doi:10.1038/nri3423
  • Schieber M, Chandel N. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–R462. doi:10.1016/j.cub.2014.03.034
  • Ali ES, Rychkov GY, Barritt GJ. TRPM2 non-selective cation channels in liver injury mediated by reactive oxygen species. Antioxidants. 2021;10:1243. doi:10.3390/antiox10081243
  • Wang Y, Zhao Y, Wang Z, et al. Peroxiredoxin 3 inhibits Acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol. 2021;12:652782. doi:10.3389/fimmu.2021.652782
  • Bhogal RH, Curbishley SM, Weston CJ, et al. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation. Liver Transplant. 2010;16:1303–1313. doi:10.1002/lt.22157
  • Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: the current evidence. United Eur Gastroent. 2020;8:509–519. doi:10.1177/2050640620924157
  • Geng X, Du X, Wang W, et al. Confined cascade metabolic reprogramming nanoreactor for targeted alcohol detoxification and alcoholic liver injury management. ACS Nano. 2023;17:7443–7455. doi:10.1021/acsnano.2c12075
  • Russo MW, Galanko JA, Shrestha R, et al. Liver transplantation for acute liver failure from drug induced liver injury in the United States. Liver Transplant. 2004;10:1018–1023. doi:10.1002/lt.20204
  • Björnsson E, Jerlstad P, Bergqvist A, et al. Fulminant drug-induced hepatic failure leading to death or liver transplantation in Sweden. Scand J Gastroentero. 2005;40:1095–1101. doi:10.1080/00365520510023846
  • Habib S, Shaikh OS. Drug-induced acute liver failure. Clin Liver Dis. 2017;21:151–162. doi:10.1016/j.cld.2016.08.003
  • Lei Y, Wang K, Deng L, et al. Redox regulation of inflammation: old elements, a new story. Med Res Rev. 2015;35:306–340. doi:10.1002/med.21330
  • Zhou Z, Song J, Nie L, et al. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev. 2016;45:6597–6626. doi:10.1039/C6CS00271D
  • Ni D, Wei H, Chen W, et al. Ceria nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection. Adv Mater. 2019;31:1902956. doi:10.1002/adma.201902956
  • Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17:1391–1401. doi:10.1038/nm.2507
  • Zhai Y, Petrowsky H, Hong JC, et al. Ischaemia–reperfusion injury in liver transplantation—from bench to bedside. Nat Rev Gastro Hepat. 2013;10:79–89. doi:10.1038/nrgastro.2012.225
  • Peralta C, Jiménez-Castro MB, Gracia-Sancho J. Hepatic ischemia and reperfusion injury: effects on the liver sinusoidal milieu. J Hepatol. 2013;59:1094–1106. doi:10.1016/j.jhep.2013.06.017
  • Galaris D, Barbouti A, Korantzopoulos P. Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Curr Pharm Des. 2006;12:2875–2890. doi:10.2174/138161206777947614
  • Almeida PH, Matielo CEL, Curvelo LA, et al. Update on the management and treatment of viral hepatitis. World J Gastroenterol. 2021;27:3249–3261. doi:10.3748/wjg.v27.i23.3249
  • Ringehan M, McKeating JA, Protzer U. Viral hepatitis and liver cancer. Philos T R Soc B. 2017;372:20160274. doi:10.1098/rstb.2016.0274
  • Ari ZB, Weitzman E, Safran M. Oncogenic viruses and hepatocellular carcinoma. Clin Liver Dis. 2015;19:341–360. doi:10.1016/j.cld.2015.01.006
  • Shin E-C, Jeong S-H. Natural history, clinical manifestations, and pathogenesis of hepatitis A. CSH Perspect Med. 2018;8. doi:10.1101/cshperspect.a031708
  • Kamar N, Dalton HR, Abravanel F, et al. Hepatitis E virus infection. Clin Microbiol Rev. 2014;27:116–138. doi:10.1038/nrdp.2017.87
  • Nelson NP, Easterbrook PJ, McMahon BJ. Epidemiology of hepatitis B virus infection and impact of vaccination on disease. Clin Liver Dis. 2016;20:607–628. doi:10.1016/j.cld.2016.06.006
  • El‐Serag HB, Christie IC, Puenpatom A, et al. The effects of sustained virological response to direct‐acting anti‐viral therapy on the risk of extrahepatic manifestations of hepatitis C infection. Aliment Pharmacol Ther. 2019;49:1442–1447. doi:10.1111/apt.15240
  • Bunchorntavakul C, Reddy KR. Epstein-Barr virus and cytomegalovirus infections of the liver. Gastroenterol Clin N. 2020;49:331–346. doi:10.1016/j.gtc.2020.01.008
  • Leonardsson H, Hreinsson JP, Löve A, et al. Hepatitis due to Epstein–Barr virus and cytomegalovirus: clinical features and outcomes. Scand J Gastroentero. 2017;52:893–897. doi:10.1080/00365521.2017.1319972
  • Horwitz CA, Burke MD, Grimes P, et al. Hepatic function in mononucleosis induced by Epstein-Barr virus and cytomegalovirus. Clin Chem. 1980;26:243–246. doi:10.1093/clinchem/26.2.243
  • Rowaiye AB, Okpalefe OA, Adejoke OO, et al. Attenuating the effects of novel COVID-19 (SARS-CoV-2) infection-induced cytokine storm and the implications. J Inflamm Res. 2021;14:1487–1510. doi:10.2147/jir.S301784
  • Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol. 2020;5:428–430. doi:10.1016/s2468-1253(20)30057-1
  • Ibrahim H, Perl A, Smith D, et al. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol. 2020;219:108544. doi:10.1016/j.clim.2020.108544
  • Fu Y, Chen T, Weng L, et al. Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother. 2021;141:111888. doi:10.1016/j.biopha.2021.111888
  • Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastro Hepat. 2015;12:231–242. doi:10.1038/nrgastro.2015.35
  • Massey VL, Arteel GE. Acute alcohol-induced liver injury. Front Physiol. 2012;3:193. doi:10.3389/fphys.2012.00193
  • Wei H, Gao L, Fan K, et al. Nanozymes: a clear definition with fuzzy edges. Nano Today. 2021;40:101269. doi:10.1016/j.nantod.2021.101269
  • Chen Z, Yu Y, Gao Y, et al. Rational design strategies for nanozymes. ACS Nano. 2023;17:13062–13080. doi:10.1021/acsnano.3c04378
  • Li F, Qiu Y, Xia F, et al. Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today. 2020;35:100925. doi:10.1016/j.nantod.2020.100925
  • Wu H, Xia F, Zhang L, et al. A ROS-Sensitive nanozyme-augmented photoacoustic nanoprobe for early diagnosis and therapy of acute liver failure. Adv Mater. 2022;34:2108348. doi:10.1002/adma.202108348
  • Feng Q, Xu H, Pan X, et al. Antioxidation and anti-inflammatory activity of Prussian blue nanozymes to alleviate acetaminophen-induced acute liver injury. ACS Appl Nano Mater. 2023;6:8468–8481. doi:10.1021/acsanm.3c00763
  • Bai H, Kong F, Feng K, et al. Prussian blue nanozymes prevent anthracycline-induced liver injury by attenuating oxidative stress and regulating inflammation. ACS Appl Mater Interfaces. 2021;13:42382–42395. doi:10.1021/acsami.1c09838
  • Jin Y, Zhang J, Xu Y, et al. Stem cell-derived hepatocyte therapy using versatile biomimetic nanozyme incorporated nanofiber-reinforced decellularized extracellular matrix hydrogels for the treatment of acute liver failure. Bioact Mater. 2023;28:112–131. doi:10.1016/j.bioactmat.2023.05.001
  • Xu H, Zhang ZR, Zhang LY, et al. Tungsten disulfide nanoflowers with multi-nanoenzyme activities for the treatment of acute liver injury. J Colloid Interf Sci. 2022;625:544–554. doi:10.1016/j.jcis.2022.06.043
  • Li Y, Li Y, Bai Y, et al. High catalytic efficiency from Er 3+ -doped CeO 2−x nanoprobes for in vivo acute oxidative damage and inflammation therapy. J Mater Chem B. 2020;8:8634–8643. doi:10.1039/D0TB01463J
  • Shao L, Xiong X, Zhang Y, et al. IL-22 ameliorates LPS-induced acute liver injury by autophagy activation through ATF4-ATG7 signaling. Cell Death Dis. 2020;11:970. doi:10.1038/s41419-020-03176-4
  • Yoshida T, Abe K, Ikeda T, et al. Inhibitory effect of glycyrrhizin on lipopolysaccharide and d-galactosamine-induced mouse liver injury. Eur J Pharmacol. 2007;576:136–142. doi:10.1016/j.ejphar.2007.08.012
  • Toyabe S, Seki S, Iiai T, et al. Requirement of IL-4 and liver NK1+ T cells for concanavalin A-induced hepatic injury in mice. J Immunol. 1997;159:1537–1542. doi:10.4049/jimmunol.159.3.1537
  • Ren J, Meng S, Yan B, et al. Protectin D1 reduces concanavalin A-induced liver injury by inhibiting NF-κB-mediated CX3CL1/CX3CR1 axis and NLR family, pyrin domain containing 3 inflammasome activation. Mol Med Rep. 2016;13:3627–3638. doi:10.3892/mmr.2016.4980
  • Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol. 2009;83:519–548. doi:10.1007/s00204-009-0432-0
  • Arteel GE. Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology. 2003;124:778–790. doi:10.1053/gast.2003.50087
  • Si PR, Lei JX, Yang C, et al. Mesoporous hollow manganese doped ceria nanoparticle for effectively prevention of hepatic ischemia reperfusion injury. Int J Nanomedicine. 2023;18:2225–2238. doi:10.2147/ijn.S400467
  • Long X, Qiu W, Wang Z, et al. Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Mater Today Chem. 2019;11:16–28. doi:10.1016/j.mtchem.2018.09.003
  • Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118:4981–5079. doi:10.1021/acs.chemrev.7b00776
  • Liu Y, Cheng Y, Zhang H, et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci Adv. 2020;6:eabb2695. doi:10.1126/sciadv.abb2695
  • Zhang S, Cao Y, Xu B, et al. An antioxidant nanodrug protects against hepatic ischemia–reperfusion injury by attenuating oxidative stress and inflammation. J Mater Chem B. 2022;10:7563–7569. doi:10.1039/D1TB02689E
  • Sahu A, Jeon J, Lee MS, et al. Nanozyme impregnated mesenchymal stem cells for hepatic ischemia-reperfusion injury alleviation. ACS Appl Mater Interfaces. 2021;13:25649–25662. doi:10.1021/acsami.1c03027
  • Huang YX, Xu QY, Zhang J, et al. Prussian blue scavenger ameliorates hepatic ischemia-reperfusion injury by inhibiting inflammation and reducing oxidative stress. Front Immunol. 2022;13:891351. doi:10.3389/fimmu.2022.891351
  • Chen C, Wu H, Li Q, et al. Manganese Prussian blue nanozymes with antioxidant capacity prevent Acetaminophen-induced acute liver injury. Biomater Sci. 2023;11:2348–2358. doi:10.1039/d2bm01968j
  • Zhang B, Chen G, Wu X, et al. Biomimetic Prussian blue nanozymes with enhanced bone marrow-targeting for treatment of radiation-induced hematopoietic injury. Biomaterials. 2023;293:121980. doi:10.1016/j.biomaterials.2022.121980
  • Li X, Liu Y, Qi X, et al. Sensitive activatable nanoprobes for real-time ratiometric magnetic resonance imaging of reactive oxygen species and ameliorating inflammation in vivo. Adv Mater. 2022;34:e2109004. doi:10.1002/adma.202109004
  • Zhang ZR, Zhao JL, Chen Z, et al. A molybdenum-based nanoplatform with multienzyme mimicking capacities for oxidative stress-induced acute liver injury treatment. Inorg Chem Front. 2023;10:1305–1314. doi:10.1039/d2qi02318k
  • Oró D, Yudina T, Fernández-Varo G, et al. Cerium oxide nanoparticles reduce steatosis, portal hypertension and display anti-inflammatory properties in rats with liver fibrosis. J Hepatol. 2016;64:691–698. doi:10.1016/j.jhep.2015.10.020
  • Sun T, Liu Y, Zhou C, et al. Fluorine-mediated synthesis of anisotropic iron oxide nanostructures for efficient T2-weighted magnetic resonance imaging. Nanoscale. 2021;13:7638–7647. doi:10.1039/D1NR00338K
  • Chen Z, Yin -J-J, Zhou Y-T, et al. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano. 2012;6:4001–4012. doi:10.1021/nn300291r
  • Zanganeh S, Hutter G, Spitler R, et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol. 2016;11:986–994. doi:10.1038/nnano.2016.168
  • Feng K, Zhang J, Dong H, et al. Prussian blue nanoparticles having various sizes and crystallinities for multienzyme catalysis and magnetic resonance imaging. ACS Appl Nano Mater. 2021;4:5176–5186. doi:10.1021/acsanm.1c00617
  • Zhang W, Hu S, Yin -J-J, et al. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 2016;138:5860–5865. doi:10.1021/jacs.5b12070
  • Lu K, Zhu X-Y, Li Y, et al. Progress in the preparation of Prussian blue-based nanomaterials for biomedical applications. J Mater Chem B. 2023;11:5272–5300. doi:10.1039/D2TB02617A
  • Dong C, Feng W, Xu W, et al. The coppery age: copper (Cu)-involved nanotheranostics. Adv Sci. 2020;7:2001549. doi:10.1002/advs.202001549
  • Cao Z, Wang H, Chen J, et al. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater. 2023;20:221–242. doi:10.1016/j.bioactmat.2022.05.025
  • Lin S, Cheng Y, Zhang H, et al. Copper tannic acid coordination nanosheet: a potent nanozyme for scavenging ROS from cigarette smoke. Small. 2020;16:1902123. doi:10.1002/smll.201902123
  • Yao J, Cheng Y, Zhou M, et al. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci. 2018;9:2927–2933. doi:10.1039/C7SC05476A
  • He W, Zhou Y-T, Wamer WG, et al. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials. 2013;34:765–773. doi:10.1016/j.biomaterials.2012.10.010
  • Ge C, Fang G, Shen X, et al. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano. 2016;10:10436–10445. doi:10.1021/acsnano.6b06297
  • Comotti M, Della Pina C, Falletta E, et al. Aerobic oxidation of glucose with gold catalyst: hydrogen peroxide as intermediate and reagent. Adv Synth Catal. 2006;348:313–316. doi:10.1002/adsc.200505389
  • Nomura M, Yoshimura Y, Kikuiri T, et al. Platinum nanoparticles suppress osteoclastogenesis through scavenging of reactive oxygen species produced in RAW264.7 Cells. J Pharmacol Sci. 2011;117:243–252. doi:10.1254/jphs.11099FP
  • Dai Y, Ding Y, Li L. Nanozymes for regulation of reactive oxygen species and disease therapy. Chinese Chem Lett. 2021;32:2715–2728. doi:10.1016/j.cclet.2021.03.036
  • Zhang DY, Tu T, Younis MR, et al. Clinically translatable gold nanozymes with broad spectrum antioxidant and anti-inflammatory activity for alleviating acute kidney injury. Theranostics. 2021;11:9904–9917. doi:10.7150/thno.66518
  • Cai Rui L. Research progress of noble metal⁃based nanozymes. Chem J Chinese U. 2020;42:1188–1201. doi:10.7503/cjcu20200591
  • Zhou C, Zhang L, Sun T, et al. Activatable NIR-II plasmonic nanotheranostics for efficient photoacoustic imaging and photothermal cancer therapy. Adv Mater. 2021;33:2006532. doi:10.1002/adma.202006532
  • Lu Q, Zhou Y, Xu M, et al. Sequential delivery for hepatic fibrosis treatment based on carvedilol loaded star-like nanozyme. J Control Release. 2022;341:247–260. doi:10.1016/j.jconrel.2021.11.033
  • Xia F, Hu X, Zhang B, et al. Ultrasmall ruthenium nanoparticles with boosted antioxidant activity upregulate regulatory T cells for highly efficient liver injury therapy. Small. 2022;18:2201558. doi:10.1002/smll.202201558
  • Zhang Y, Gao W, Ma Y, et al. Integrating Pt nanoparticles with carbon nanodots to achieve robust cascade superoxide dismutase-catalase nanozyme for antioxidant therapy. Nano Today. 2023;49:101768. doi:10.1016/j.nantod.2023.101768
  • Lu Y, Pan X, Cao C, et al. MnO2 coated mesoporous pdpt nanoprobes for scavenging reactive oxygen species and solving acetaminophen-induced liver injury. Adv Healthc Mater. 2023;12:2300163. doi:10.1002/adhm.202300163
  • Bechinger C, Di Leonardo R, Lowen H, et al. Active particles in complex and crowded environments. Rev Mod Phys. 2016;88. doi:10.1103/RevModPhys.88.045006
  • Zhou C, Zhang L, Xu Z, et al. Self-Propelled Ultrasmall AuNPs-tannic acid hybrid nanozyme with ROS-scavenging and anti-inflammatory activity for drug-induced liver injury alleviation. Small. 2023;19:2206408. doi:10.1002/smll.202206408
  • Ding H, Hu B, Zhang B, et al. Carbon-based nanozymes for biomedical applications. Nano Res. 2021;14:570–583. doi:10.1007/s12274-020-3053-9
  • Iohara D. Preparation and evaluation of fullerene based nanomedicine. Yakugaku Zasshi. 2019;139:1539–1546. doi:10.1248/yakushi.19-00172
  • Kong B, Yang T, Cheng F, et al. Carbon dots as nanocatalytic medicine for anti-inflammation therapy. J Colloid Interf Sci. 2022;611:545–553. doi:10.1016/j.jcis.2021.12.107
  • Umezaki Y, Iohara D, Anraku M, et al. Preparation of hydrophilic C-60(OH)(10)/2-hydroxypropyl-beta-cyclodextrin nanoparticles for the treatment of a liver injury induced by an overdose of Acetaminophen. Biomaterials. 2015;45:115–123. doi:10.1016/j.biomaterials.2014.12.032
  • Zhou Y, Li J, Ma HJ, et al. Biocompatible [60] / [70] fullerenols: potent defense against oxidative injury induced by reduplicative chemotherapy. ACS Appl Mater Interfaces. 2017;9:35539–35547. doi:10.1021/acsami.7b08348
  • Long Y, Wei H, Li J, et al. Prevention of hepatic ischemia-reperfusion injury by carbohydrate-derived nanoantioxidants. Nano Lett. 2020;20:6510–6519. doi:10.1021/acs.nanolett.0c02248
  • Xu YC, Chen J, Jiang W, et al. Multiplexing nanodrug ameliorates liver fibrosis via ROS elimination and inflammation suppression. Small. 2022;18:2102848. doi:10.1002/smll.202102848
  • Chen D, Wang CQ, Yu HJ, et al. Nitrogen-doped carbon dots with oxidation stress protective effects for reactive oxygen species scavenging on hepatic ischemia-reperfusion injury. ACS Appl Nano Mater. 2023. doi:10.1021/acsanm.3c01885
  • Bai B, Qi S, Yang K, et al. Self-assembly of selenium-doped carbon quantum dots as antioxidants for hepatic ischemia-reperfusion injury management. Small. 2023;19:2300217. doi:10.1002/smll.202300217
  • Ge X, Su L, Yang L, et al. NIR-II fluorescent biodegradable nanoprobes for precise acute kidney/liver injury imaging and therapy. Anal Chem. 2021;93:13893–13903. doi:10.1021/acs.analchem.1c02742
  • Lee MS, Kim NW, Lee JE, et al. Targeted cellular delivery of robust enzyme nanoparticles for the treatment of drug-induced hepatotoxicity and liver injury. Acta Biomater. 2018;81:231–241. doi:10.1016/j.actbio.2018.09.023
  • Zhao CY, Li Z, Chen JX, et al. Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Adv Mater. 2021;33(34). doi:10.1002/adma.202102391
  • Yang P, Wang TY, Zhang JH, et al. Manipulating the antioxidative capacity of melanin-like nanoparticles by involving condensation polymerization. Sci China Chem. 2023. doi:10.1007/s11426-023-1542-8
  • Huang Q, Yang Y, Zhu Y, et al. Oral metal-free melanin nanozymes for natural and durable targeted treatment of inflammatory bowel disease (IBD). Small. 2023;19:e2207350. doi:10.1002/smll.202207350