307
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Novel pH-Responsive Iron Oxide Core-Shell Magnetic Mesoporous Silica Nanoparticle (M-MSN) System Encapsulating Doxorubicin (DOX) and Glucose Oxidase (Gox) for Pancreatic Cancer Treatment

, , , , ORCID Icon, ORCID Icon, & show all
Pages 7133-7147 | Received 20 Aug 2023, Accepted 21 Nov 2023, Published online: 29 Nov 2023

References

  • Siege RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA. 2022;72(1):7–33. doi:10.3322/caac.21708
  • Mizrahi JD, Surana R, Valle JW, Shroff RT. Pancreatic cancer. Lancet. 2020;395(10242):2008–2020. doi:10.1016/S0140-6736(20)30974-0
  • Shah VM, Sheppard BC, Sears RC, Alani AW. Hypoxia: friend or Foe for drug delivery in Pancreatic Cancer. Cancer Lett. 2020;492:63–70. doi:10.1016/j.canlet.2020.07.041
  • Springfeld C, Ferrone CR, Katz MHG, et al. Neoadjuvant therapy for pancreatic cancer. Nat Rev Clin Oncol. 2023;20(5):318–337. doi:10.1038/s41571-023-00746-1
  • Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem Rev. 2021;121(22):13797–13868. doi:10.1021/acs.chemrev.0c01332
  • Liang C, Xu L, Song G, Liu Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem Soc Rev. 2016;45:6250–6269. doi:10.1039/c6cs00458j
  • Wang ZY, Wu CC, Liu JR, et al. Aptamer-mediated hollow MnO2 for targeting the delivery of sorafenib. Drug Deliv. 2023;30:28–39. doi:10.1080/10717544.2022.2149897
  • Feng Y, Xie XX, Zhang HX, et al. Multistage-responsive nanovehicle to improve tumor penetration for dual-modality imaging-guided photodynamic-immunotherapy. Biomaterials. 2021;275:120990. doi:10.1016/j.biomaterials.2021.120990
  • Nel J, Elkhoury K, Velot É, et al. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater. 2023;24:401–437. doi:10.1016/j.bioactmat.2022.12.027
  • Bao JF, Zu XY, Wang X, et al. Multifunctional Hf/Mn-TCPP metal-organic framework nanoparticles for triple-modality imaging-guided PTT/RT synergistic cancer therapy. Int J Nanomed. 2020;15:7687–7702. doi:10.2147/IJN.S267321
  • Raza F, Evans L, Motallebi M, et al. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023;157:1–23. doi:10.1016/j.actbio.2022.12.013
  • Xie Y, Hang Y, Wang Y, et al. Stromal modulation and treatment of metastatic pancreatic cancer with local intraperitoneal triple miRNA/siRNA nanotherapy. ACS Nano. 2020;14:255–271. doi:10.1021/acsnano.9b03978
  • Grafals-Ruiz N, Rios-Vicil CI, ozada-Delgado EL, et al. Brain targeted gold liposomes improve RNAi delivery for glioblastoma. Int J Nanomed. 2020;15:2809–2828. doi:10.2147/IJN.S241055
  • Kang H, Rho S, Stiles WR, et al. Size-dependent EPR effect of polymeric nanoparticles on tumor targeting. Adv Healthc Mater. 2020;9:e1901223. doi:10.1002/adhm.201901223
  • Cheng R, Jiang L, Gao H, et al. A pH-responsive cluster metal-organic framework nanoparticle for enhanced tumor accumulation and antitumor effect. Adv Mater. 2022;34:e2203915. doi:10.1002/adma.202203915
  • Hu JJ, Liu MD, Gao F, et al. Photo-controlled liquid metal nanoparticle-enzyme for starvation/photothermal therapy of tumor by win-win cooperation. Biomaterials. 2019;217:119303. doi:10.1016/j.biomaterials.2019.119303
  • Seth A, Gholami Derami H, Gupta P, et al. Polydopamine-mesoporous silica core-shell nanoparticles for combined photothermal immunotherapy. ACS Appl Mater Interfaces. 2020;12:42499–42510. doi:10.1021/acsami.0c10781
  • Li XD, Yu CG, Bao HY, Cheng SN, Huang J, Zhang ZJ. ROS-responsive janus Au/mesoporous silica core/shell nanoparticles for drug delivery and long-term CT imaging tracking of MSCs in pulmonary fibrosis treatment. ACS Nano. 2023;17:6387–6399. doi:10.1021/acsnano.2c11112
  • Sagir T, Isık S, Burgucu N, Tabakoglu O, Zaim M. Folic acid conjugated PAMAM-modified mesoporous silica-coated superparamagnetic iron oxide nanoparticles for potential cancer therapy. J Colloid Interface Sci. 2022;625:711–721. doi:10.1016/j.jcis.2022.06.069
  • Shosha NNH, Elmasry S, Moawad M, Ismail SH, Elsayed M. Invivo and invitro evaluation of antitumor effects of iron oxide and folate core shell-iron oxide nanoparticles. Braz J Biol. 2022;84:e253183. doi:10.1590/1519-6984.253183
  • Wang H, Mu QX, Revia R, et al. Iron oxide-carbon core-shell nanoparticles for dual-modal imaging-guided photothermal therapy. J Control Release. 2018;289:70–78. doi:10.1016/j.jconrel.2018.09.022
  • Thirumurugan S, Samuvel Muthiah K, Sakthivel R, et al. Chung, polydopamine-coated Cu-BTC nanowires for effective magnetic resonance imaging and photothermal therapy. Pharmaceutics. 2023;15:822. doi:10.3390/pharmaceutics15030822
  • Chen ZW, Sun YJ, Wang JW, Zhou X, Meng JS, Zhang XC. Dual-responsive triple-synergistic Fe-MOF for tumor theranostics. ACS Nano. 2023;17:9003–9013. doi:10.1021/acsnano.2c10310
  • Zhang T, Jiang ZQ, Xue T, et al. One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. Nanoscale. 2019;11:21759–21766. doi:10.1039/c9nr05671h
  • Ding X, Bai SW, Liu FC, et al. NIR-II-triggered photothermal therapy with Au@PDA/PEG-PI for targeted downregulation of PSMA in prostate cancer. Acta Biomater. 2023;157:487–499. doi:10.1016/j.actbio.2022.12.017
  • Huo TT, Chen LL, Nie HF, et al. Mitochondrial dysfunction and antioxidation dyshomeostasis-enhanced tumor starvation synergistic chemotherapy achieved using a metal-organic framework-based nano-enzyme reactor. ACS Appl Mater Interfaces. 2022;14:3675–3684. doi:10.1021/acsami.1c18654
  • Hao SY, Zuo JJ, Huang HW, et al. Tumor microenvironment (TME)-modulating nanoreactor for multiply enhanced chemo dynamic therapy synergized with chemotherapy, starvation, and photothermal therapy. J Mater Chem B. 2023;11:1739–1748. doi:10.1039/d2tb02523j
  • Shen YM, Lv W, Yang HL, et al. FA-NBs-IR780: novel multifunctional nanobubbles as molecule-targeted ultrasound contrast agents for accurate diagnosis and photothermal therapy of cancer. Cancer Lett. 2019;455:14–25. doi:10.1016/j.canlet.2019.04.023
  • Cheng LX, Sang DM, Zhao FY, et al. Magnetic resonance/infrared dual-modal imaging-guided synergistic photothermal/photodynamic therapy nanoplatform based on Cu1.96S-Gd@FA for precision cancer theranostics. J Colloid Interface Sci. 2022;615:95–109. doi:10.1016/j.jcis.2022.01.099
  • Li B, Tan TF, Chu WW, et al. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Drug Deliv. 2022;29:75–88. doi:10.1080/10717544.2021.2018523
  • Dong XW, Ye J, Wang YH, et al. Ultra-small and metabolizable near-infrared Au/Gd nanoclusters for targeted FL/MRI imaging and cancer theranostics. Biosensors. 2022;12:558. doi:10.3390/bios12080558
  • Wang J, Cen MP, Jing DN, et al. Gox-assisted synthesis of pillar [5] arene based supramolecular polymeric nanoparticles for targeted/synergistic chemo-chemodynamic cancer therapy. J Nanobiotechnol. 2022;20:33. doi:10.1186/s12951-021-01237-0
  • Fu LH, Hu YR, Qi C, et al. Biodegradable manganese-doped calcium phosphate nanotheranostics for traceable cascade reaction-enhanced anti-tumor therapy. ACS Nano. 2019;13:13985–13994. doi:10.1021/acsnano.9b05836
  • Zhang X, Wang YM, Zhao YB, et al. Sun, pH-responsive drug release and real-time fluorescence detection of porous silica nanoparticles. Mater Sci Eng C Mater Biol Appl. 2017;77:19–26. doi:10.1016/j.msec.2017.03.224
  • Li ZT, Guo J, Qi GQ, et al. Hao, pH-responsive drug delivery and imaging study of hybrid mesoporous silica nanoparticles. Molecules. 2022;27:6519. doi:10.3390/molecules27196519
  • Sun K, Gao ZG, Zhang Y, et al. Enhanced highly toxic reactive oxygen species levels from iron oxide core-shell mesoporous silica nanocarrier-mediated Fenton reactions for cancer therapy. J Mater Chem B. 2018;6:5876–5887. doi:10.1039/c8tb01731j
  • Kim MY, Ahn JP, Han SY, Lee NS, Jeong YG, Kim DK. Highly luminescent and anti-photobleaching core-shell structure of mesoporous silica and phosphatidylcholine modified superparamagnetic iron oxide nanoparticles. Nanomaterials. 2020;10:1312. doi:10.3390/nano10071312
  • Pérez-Garnes M, Morales V, Sanz R. Cytostatic and cytotoxic effects of hollow-shell mesoporous silica nanoparticles containing magnetic iron oxide. Nanomaterials. 2021;11:2455. doi:10.3390/nano11092455
  • Vaz-Ramos J, Cordeiro R, Castro MMCA, et al. Supercritically dried superparamagnetic mesoporous silica nanoparticles for cancer theranostics. Mater Sci Eng C Mater Biol Appl. 2020;115:111124. doi:10.1016/j.msec.2020.111124
  • Cheng W, Nie JP, Xu L, et al. pH-sensitive delivery vehicle based on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for targeted cancer therapy. ACS Appl Mater Interfaces. 2017;9:18462–18473. doi:10.1021/acsami.7b02457
  • Wang S, Qi G, Zhang Z, et al. cRGD-conjugated GdIO nanoclusters for the theranostics of pancreatic cancer through the combination of T1-T2 dual-modal MRI and DTX delivery. Molecules. 2023;28:6134. doi:10.3390/molecules28166134
  • Guo X, Wu Z, Li W, et al. Appropriate size of magnetic nanoparticles for various bioapplications in cancer diagnostics and therapy. ACS Appl Mater Interfaces. 2016;8:3092–3106. doi:10.1021/acsami.5b10352