160
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Designing Green Synthesis-Based Silver Nanoparticles for Antimicrobial Theranostics and Cancer Invasion Prevention

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 4451-4464 | Received 18 Sep 2023, Accepted 09 Mar 2024, Published online: 23 May 2024

References

  • Gautam YK, Sharma K, Tyagi S, Kumar A, Singh BP. Applications of green nanomaterials in coatings. Green Nanoma Indus Applic. 2022;107–152. doi:10.1016/b978-0-12-823296-5.00014-9
  • Ying S, Guan Z, Ofoegbu PC, et al. Green synthesis of nanoparticles: Current developments and limitations. Environ Tech Inno. 2022;26:102336. doi:10.1016/j.eti.2022.102336
  • Kharissova OV, Kharisov BI, Oliva González CM, Méndez YP, López I. Greener SYNTHESIS OF CHEMICAL COMPOUNDS AND MATERIALS. Royal Soc Open Sci. 2019;6:191378. doi:10.1098/rsos.191378
  • Parveen K, Banse V, Ledwani L Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings, 2016.
  • Hano C, Abbasi BH. Plant-based green synthesis of nanoparticles: Production, characterization and applications. Biomolecules. 2021;12:31. doi:10.3390/biom12010031
  • Huang J, Xu Y, Xiao H, et al. Core–Shell Distinct Nanodrug Showing On-Demand Sequential drug release to act on multiple cell types for synergistic anticancer therapy. ACS Nano. 2019;13:7036–7049. doi:10.1021/acsnano.9b02149
  • Maaz K. Silver Nanoparticles - Fabrication, Characterization and Applications.InTech;2018,
  • Takáč P, Michalková R, Čižmáriková M, Bedlovičová Z, Balážová Ľ, Takáčová G. The role of silver nanoparticles in the diagnosis and treatment of cancer: are there any perspectives for the future? Life. 2023;13:466. doi:10.3390/life13020466
  • Gavas S, Quazi S, Karpiński TM. Nanoparticles for Cancer Therapy: current Progress and Challenges. Nanoscale Res Lett. 2021. doi:10.1186/s11671-021-03628-6
  • Thakur A, Thakur P, Khurana SMP. Synthesis and Applications of Nanoparticles.Springer Nature Singapore;2022.
  • Okafor F, Janen A, Kukhtareva T, Edwards V, Curley M. Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. Int J Environ Res Public Health. 2013;10:5221–5238. doi:10.3390/ijerph10105221
  • Martínez-Esquivias F, Guzmán-Flores JM, Perez-Larios A. antimicrobial activity of green synthesized Se Nanoparticles using ginger and onion extract: A laboratory and in silico analysis. Part Sci Technol. 2022;41:319–329. doi:10.1080/02726351.2022.2088432
  • Ahmed MJ, Murtaza G, Rashid F, Iqbal J. Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer Agents. Drug Dev Ind Pharm. 2019;45:1682–1694. doi:10.1080/03639045.2019.1656224
  • Noorbazargan H, Amintehrani S, Dolatabadi A, et al. Anti-Cancer & anti-metastasis properties of bioorganic-capped silver nanoparticles fabricated from Juniperus chinensis extract against lung cancer cells. AMB Express. 2021;11. doi:10.1186/s13568-021-01216-6
  • Ovais M, Khalil AT, Raza A, et al. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine. 2016;11:3157–3177. doi:10.2217/nnm-2016-0279
  • Acharya D, Satapathy S, Somu P, Parida UK, Mishra G. Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae chaetomorpha linum extract against human colon cancer cell HCT-116. Biol Trace Elem Res. 2020;199:1812–1822. doi:10.1007/s12011-020-02304-7
  • Gomathi AC, Xavier Rajarathinam SR, Mohammed Sadiq A, Rajeshkumar S. Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on mcf-7 human breast cancer cell line. J Drug Deliv Sci Technol. 2020;55:101376. doi:10.1016/j.jddst.2019.101376
  • Othman MM, Obeidat S, Al-Bagawi A, et al. Evaluation of the potential role of silver nanoparticles loaded with berberine in improving anti-tumor efficiency. Pharm Sci. 2021. doi:10.34172/ps.2021.28
  • Kumari K, Nandi A, Sinha A, et al. Biosurfactant-functionalized Silver nanoparticles infer intrinsic proximal interaction via Lysine and glutamic acid for reduced in vivo molecular biotoxicity with embryonic zebrafish through oxidative stress and apoptosis. J Environ Chem Eng. 2023;11(3):110147. doi:10.1016/j.jece.2023.110147
  • Sinha A, Simnani FZ, Singh D, et al. The translational paradigm of nanobiomaterials: biological chemistry to modern applications. Mater Today Bio. 2022;17:100463‏. doi:10.1016/j.mtbio.2022.100463
  • Panda PK, Kumari P, Patel P, et al. Molecular nanoinformatics approach assessing the biocompatibility of biogenic silver nanoparticles with channelized intrinsic steatosis and apoptosis. Green Chem. 2022;24(3):1190–1210. doi:10.1039/D1GC04103G
  • Husain S, Verma SK, Yasin D, Rizvi MMA, Fatma T. Facile green bio-fabricated silver nanoparticles from Microchaete infer dose-dependent antioxidant and anti-proliferative activity to mediate cellular apoptosis. Bioor Chem. 2021;107:104535. doi:10.1016/j.bioorg.2020.104535
  • Nasibova A. Generation of nanoparticles in biological systems and their application prospects. Adv Biol Earth Sci. 2023;8(2):140–146‏.
  • Baran A, Fırat Baran M, Keskin C, et al. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front Bioeng Biotech. 2022;10:855136. doi:10.3389/fbioe.2022.855136
  • Ramazanli VN, Ahmadov IS. Synthesis of silver nanoparticles by using extract of olive leaves. Adv Biol Ear Sci. 2022;7(3):238–244.
  • Alharbi FA, Alarfaj AA. Green synthesis of silver nanoparticles from Neurada procumbens and its antibacterial activity against multi-drug resistant microbial pathogens. J King Saud Univ Sci. 2020;32(2):1346–1352‏.
  • Veisi H, Hemmati S, Shirvani H, Veisi H. Green synthesis and characterization of monodispersed silver nanoparticles obtained using oak fruit bark extract and their antibacterial activity. Appl. Organo Chem. 2016;30:387–391. doi:10.1002/aoc.3444
  • Quinten M, Leitner A, Krenn JR, Aussenegg FR. Electromagnetic Energy Transport via Linear Chains of Silver Nanoparticles. Optics Lett. 1998;23:1331. doi:10.1364/ol.23.001331
  • Wu F, Zhu J, Li G, et al. Biologically Synthesized Green Gold Nanoparticles from Siberian Ginseng Induce Growth-Inhibitory Effect on Melanoma Cells (B16). Artif Cells Nano Biotech. 2019;47:3297–3305. doi:10.1080/21691401.2019.1647224
  • Saha P, Kim BS. Plant extract and agricultural waste-mediated synthesis of silver nanoparticles and their biochemical activities. Green Synth Silver Nanomat. 2022;285–315. doi:10.1016/b978-0-12-824508-8.00010-1
  • Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R. Blue Orange Light Emission from Biogenic Synthesized Silver Nanoparticles Using Trichoderma Viride. Colloids Surf B. 2010;75:175–178. doi:10.1016/j.colsurfb.2009.08.028
  • Sastry M, Patil V, Sainkar SR. Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. J Phys Chem A. 1998;102:1404–1410. doi:10.1021/jp9719873
  • Henglein A. Physicochemical properties of small metal particles in solution: “Microelectrode” Reactions, chemisorption, composite metal particles, and the atom-to-metal Transition. J Phys Chem. 1993;97:5457–5471. doi:10.1021/j100123a004
  • Mishra YK, Mohapatra S, Kabiraj D, et al. Synthesis and characterization of ag nanoparticles in silica matrix by atom beam sputtering. Scr Mater. 2007;56:629–632. doi:10.1016/j.scriptamat.2006.12.008
  • Chugh D, Viswamalya VS, Das B. Green synthesis of silver nanoparticles with algae and the importance of capping agents in the process. J Genet Eng Biotechnol. 2021. doi:10.1186/s43141-021-00228-w
  • Ortega-Arroyo L, Martin-Martinez ES, Aguilar-Mendez MA, Cruz-Orea A, Hernandez-Pérez I, Glorieux C. Green synthesis method of silver nanoparticles using starch as capping agent applied the methodology of surface response. Starch. 2013;65:814–821. doi:10.1002/star.201200255
  • Gangopadhyay P, Kesavamoorthy R, Bera S, et al. Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles. Phys Rev Lett. 2005;94. doi:10.1103/physrevlett.94.047403
  • Bhagat M, Anand R, Datt R, Gupta V, Arya S. Green synthesis of silver nanoparticles using aqueous extract of rosa brunonii lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym Mater. 2018;29:1039–1047. doi:10.1007/s10904-018-0994-5
  • Zahran M, El-Kemary M, Khalifa S, El-Seedi H. Spectral studies of silver nanoparticles biosynthesized by origanum Majorana. Green Proc Synthesis. 2018;7:100–105. doi:10.1515/gps-2016-0183
  • Zhang A, Zhang J, Fang Y. Photoluminescence from colloidal silver nanoparticles. J Lumin. 2008;128:1635–1640. doi:10.1016/j.jlumin.2008.03.014
  • Mondal K, Biswas S, Singha T, Chatterjee U, Datta PK, Kumbhakar P. Enhanced optical power limiting and visible luminescence in colloidal dispersion of ultra-small au nanoclusters Synthesized by Single-Pot Chemical Technique. J Mol Liq. 2021;322:114909. doi:10.1016/j.molliq.2020.114909
  • Chen S, Ingram RS, Hostetler MJ, et al. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science. 1998;280:2098–2101. doi:10.1126/science.280.5372.2098
  • Bhattacharjee S. DLS and zeta potential – what they are and what they are not? J Control Release. 2016;235:337–351. doi:10.1016/j.jconrel.2016.06.017
  • de Carvalho Bernardo WL, Boriollo MFG, Tonon CC, et al. Antimicrobial effects of silver nanoparticles and extracts of Syzygium cumini flowers and seeds: Periodontal, Cariogenic and Opportunistic Pathogens. Arch Oral Biol. 2021;125:105101. doi:10.1016/j.archoralbio.2021.105101
  • Pearce AK, Wilks TR, Arno MC, O’Reilly RK. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions. Nature Rev Chem. 2020;5:21–45. doi:10.1038/s41570-020-00232-7
  • Rauwel P, Küünal S, Ferdov S, Rauwel E. A review on the green synthesis of silver nanoparticles and their Morphologies studied via TEM. Ad. Mater Sci Eng. 2015;1–92015
  • Parvataneni R. Biogenic Synthesis and Characterization of Silver Nanoparticles Using Aqueous Leaf Extract of Scoparia Dulcis L. and Assessment of Their Antimicrobial Property. Drug Chem Toxicol. 2019;43:307–321. doi:10.1080/01480545.2018.1505903
  • Jyoti K, Baunthiyal M, Singh A. Characterization of Silver Nanoparticles Synthesized Using Urtica Dioica Linn. Leaves and Their Synergistic Effects with Antibiotics. J Radiat Res Appl Sci. 2016;9:217–227. doi:10.1016/j.jrras.2015.10.002
  • Huq M. Green Synthesis of Silver Nanoparticles Using Pseudoduganella Eburnea MAHUQ-39 and Their Antimicrobial Mechanisms Investigation against Drug Resistant Human Pathogens. Int J Mol Sci. 2020;21:1510. doi:10.3390/ijms21041510
  • Meer D, Naidoo S, Dewir YH, Lin Y, Rihan JZ. Green synthesis of silver nanoparticles from heteropyxis natalensis leaf extract and their potential antibacterial efficacy. ScienceAsia. 2022;48:196. doi:10.2306/scienceasia1513-1874.2022.039
  • Shaik M, Khan M, Kuniyil M, et al. Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. Extra Microbl Act Sustain. 2018;10:913. doi:10.3390/su10040913
  • Bratovcic A. Synthesis, Characterization, Applications, and Toxicity of Lead Oxide Nanoparticles. Lead Chemistry. 2020. doi:10.5772/intechopen.91362
  • Dang-Bao T, Hoang Bao N, Phung Anh N, Hong Phuong P, Nguyen TT, Tri N. Green-synthesized silver nanoparticles decorated on ceria nanorods for room-temperature p-nitrophenol hydrogenation. Green Chem Lett Rev. 2022;15(2):449–459. doi:10.1080/17518253.2022.2089060
  • Tailor G, Lawal AM. Phytochemical Screening; Green Synthesis, Characterization and Biological Significance of Lead Oxide Nanoparticles from Eucalyptus Globulus Labill. Nanotech Environl Eng. 2021;6. doi:10.1007/s41204-021-00143-y
  • Gole A, Dash C, Ramakrishnan V, et al. Pepsin− gold colloid conjugates: preparation, characterization, and enzymatic activity. Langmuir. 2001;17(5):1674–1679. doi:10.1021/la001164w
  • Maniraj A, Kannan M, Rajarathinam K, Vivekanandhan S, Muthuramkumar S. Green synthesis of silver nanoparticles and their effective utilization in fabricating functional surface for antibacterial activity against multi-drug resistant Proteus mirabilis. Journal of Cluster Science. 2019;30:1403–1414. doi:10.1007/s10876-019-01582-z
  • Awad MA, Eisa NE, Virk P, et al. Green synthesis of gold Nanoparticles: Preparation, characterization, cytotoxicity, and anti-bacterial activities. Mater Lett. 2019;256:126608. doi:10.1016/j.matlet.2019.126608
  • Fouda A, Awad MA, AL-Faifi ZE, et al. Aspergillus Flavus-Mediated Green Synthesis of Silver Nanoparticles and Evaluation of Their Antibacterial, Anti-Candida, Acaricides, and Photocatalytic Activities. Catalysts. 2022;12:462. doi:10.3390/catal12050462
  • Salem SS, Fouda A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res. 2020;199:344–370. doi:10.1007/s12011-020-02138-3
  • El-Belely EF, Farag MMS, Said HA, et al. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira Platensis (Class: cyanophyceae) and Evaluation of Their Biomedical Activities. Nanomaterials. 2021;11:95. doi:10.3390/nano11010095
  • Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int j Nanomed. 2020;15:2555. doi:10.2147/IJN.S246764
  • Venugopal K, Ahmad H, Manikandan E, et al. The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (AgNPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. J Photochem Photobiol B Biol. 2017;173:99–107. doi:10.1016/j.jphotobiol.2017.05.031
  • Elangovan K, Elumalai D, Anupriya S, Shenbhagaraman R, Kaleena PK, Murugesan K. Phyto mediated biogenic synthesis of silver nanoparticles using leaf extract of Andrographis echioides and its bio-efficacy on anticancer and antibacterial activities. J Photochem Photobiol B Biol. 2015;151:118–124. doi:10.1016/j.jphotobiol.2015.05.015
  • Jabir MS, Hussien AA, Sulaiman GM, et al. Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. Artif. Cells Nanomed. Biotechnol. 2021;49:48–60. doi:10.1080/21691401.2020.1867152
  • Naveed M, Bukhari B, Aziz T, et al. Green Synthesis of Silver Nanoparticles Using the Plant Extract of Acer oblongifolium and Study of Its Antibacterial and Antiproliferative Activity via Mathematical Approaches. Molecules. 2022;27:4226. doi:10.3390/molecules27134226
  • Saleem HD, Hamza TA, Izzat SE, Hamad DA, Abdulhasan MJ, Adhab AH. Role Silver and Bimetallic Nano Particles Synthesized by Green Chemical Methods for their Therapeutic Potential for Cancer: a Review. J Pharml Quality Ass. 2022:2022
  • Alharbi NS, Alsubhi NS, Felimban AI. Green synthesis of silver nanoparticles using medicinal plants: characterization and application. J Radiat Res Appl Sci. 2022;15(3):109–124. doi:10.1016/j.jrras.2022.06.012
  • Rizwana H, Bokahri NA, Alfarhan A, Aldehaish HA, Alsaggabi NS. Biosynthesis and characterization of silver nanoparticles prepared using seeds of Sisymbrium irio and evaluation of their antifungal and cytotoxic activities. Green Proces Synthesis. 2022;11(1):478–491. doi:10.1515/gps-2022-0048