100
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives

, ORCID Icon, , , , , , & show all
Pages 5793-5812 | Received 25 Dec 2023, Accepted 14 May 2024, Published online: 12 Jun 2024

References

  • Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the American heart association. Circulation. 2020;141(9):e139–e596. doi:10.1161/CIR.0000000000000757
  • Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American heart association. Circulation. 2022;145(8):e153–e639. doi:10.1161/CIR.0000000000001052
  • Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–322. doi:10.1161/CIR.0000000000000152
  • Shi K, Wood K, Shi F-D, et al. Stroke-induced immunosuppression and poststroke infection. Stroke Vasc Neurol. 2018;3(1):34–41. doi:10.1136/svn-2017-000123
  • Fu Y, Liu Q, Anrather J, et al. Immune interventions in stroke. Nat Rev Neurol. 2015;11(9):524–535. doi:10.1038/nrneurol.2015.144
  • Westendorp WF, Dames C, Nederkoorn PJ, et al. Immunodepression, infections, and functional outcome in ischemic stroke. Stroke. 2022;53(5):1438–1448. doi:10.1161/STROKEAHA.122.038867
  • Chamorro Á, Meisel A, Planas AM, et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401–410. doi:10.1038/nrneurol.2012.98
  • Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med. 2011;17(7):796–808. doi:10.1038/nm.2399
  • Zhang S, Liu C, Sun J, et al. Bridging the gap: investigating the link between inflammasomes and postoperative cognitive dysfunction. Aging Dis. 2023;14(6):1981–2002. doi:10.14336/AD.2023.0501
  • Zhao H, Luan X, Wang Y, et al. Dynamic detection of specific membrane capacitance and cytoplasmic resistance of neutrophils after ischemic stroke. Aging Dis. 2023;14(4):1035–1037. doi:10.14336/AD.2023.0127
  • Xiong X, Gu L, Wang Y, et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms. J Neuroinflammation. 2016;13(1):241. doi:10.1186/s12974-016-0705-5
  • Gu L, Xiong X, Zhang H, et al. Distinctive effects of T cell subsets in neuronal injury induced by cocultured splenocytes in vitro and by in vivo stroke in mice. Stroke. 2012;43(7):1941–1946. doi:10.1161/STROKEAHA.112.656611
  • Yao Y, Li Y, Ni W, et al. Systematic study of immune cell diversity in ischemic postconditioning using high-dimensional single-cell analysis with mass cytometry. Aging Dis. 2021;12(3):812–825. doi:10.14336/AD.2020.1115
  • Gu L, Xiong X, Wei D, et al. T cells contribute to stroke-induced lymphopenia in rats. PLoS One. 2013;8(3):e59602.
  • Ahmed R, Amreddy N, Babu A, et al. Combinatorial nanoparticle delivery of siRNA and antineoplastics for lung cancer treatment. Methods Mol Biol. 2019;1974:265–290.
  • Jyotsana N, Sharma A, Chaturvedi A, et al. Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Ann Hematol. 2019;98(8):1905–1918. doi:10.1007/s00277-019-03713-y
  • Zatsepin TS, Kotelevtsev YV, Koteliansky V. Lipid nanoparticles for targeted siRNA delivery - going from bench to bedside. Int J Nanomed. 2016;11:3077–3086. doi:10.2147/IJN.S106625
  • Tsai YC, Vijayaraghavan P, Chiang W-H, et al. Targeted delivery of functionalized upconversion nanoparticles for externally triggered photothermal/photodynamic therapies of brain glioblastoma. Theranostics. 2018;8(5):1435–1448. doi:10.7150/thno.22482
  • Wang Y, Liu C, Chen Y, et al. Systemically silencing long non-coding RNAs maclpil with short interfering RNA nanoparticles alleviates experimental ischemic stroke by promoting macrophage apoptosis and anti-inflammatory activation. Front Cardiovasc Med. 2022;9:876087. doi:10.3389/fcvm.2022.876087
  • Schmid D, Park CG, Hartl CA, et al. T cell-targeting nanoparticles focus delivery of immunotherapy to improve antitumor immunity. Nat Commun. 2017;8(1):1747. doi:10.1038/s41467-017-01830-8
  • Gong N, Sheppard NC, Billingsley MM, et al. Nanomaterials for T-cell cancer immunotherapy. Nat Nanotechnol. 2021;16(1):25–36. doi:10.1038/s41565-020-00822-y
  • Wauters AC, Scheerstra JF, Vermeijlen IG, et al. Artificial antigen-presenting cell topology dictates T cell activation. ACS Nano. 2022;16(9):15072–15085. doi:10.1021/acsnano.2c06211
  • Meyer RA, Sunshine JC, Perica K, et al. Biodegradable nanoellipsoidal artificial antigen presenting cells for antigen specific T-cell activation. Small. 2015;11(13):1519–1525. doi:10.1002/smll.201402369
  • Oh J, Xia X, Wong WKR, et al. The effect of the nanoparticle shape on T cell activation. Small. 2022;18(36):e2107373. doi:10.1002/smll.202107373
  • Wang T, Zhang H, Han Y, et al. Reversing T cell dysfunction to boost glioblastoma immunotherapy by paroxetine-mediated GRK2 inhibition and blockade of multiple checkpoints through biomimetic nanoparticles. Adv Sci (Weinh). 2023;10(9):e2204961. doi:10.1002/advs.202204961
  • Hey G, Bhutani S, Woolridge MG, et al. immunologic implications for stroke recovery: unveiling the role of the immune system in pathogenesis, neurorepair, and rehabilitation. J Cell Immunol. 2023;5(3):65–81. doi:10.33696/immunology.5.170
  • Faura J, Bustamante A, Miró-Mur F, et al. Stroke-induced immunosuppression: implications for the prevention and prediction of post-stroke infections. J Neuroinflammation. 2021;18(1):127. doi:10.1186/s12974-021-02177-0
  • Luckheeram RV, Zhou R, Verma AD, et al. CD4 + T cells: differentiation and functions. Clin Dev Immunol. 2012;2012:925135. doi:10.1155/2012/925135
  • Laidlaw BJ, Craft JE, Kaech SM. The multifaceted role of CD4(+) T cells in CD8(+)T cell memory. Nat Rev Immunol. 2016;16(2):102–111. doi:10.1038/nri.2015.10
  • Gill D, Veltkamp R. Dynamics of T cell responses after stroke. Curr Opin Pharmacol. 2016;26:26–32. doi:10.1016/j.coph.2015.09.009
  • Zhang D, Ren J, Luo Y, et al. T cell response in ischemic stroke: from mechanisms to translational insights. Front Immunol. 2021;12:707972. doi:10.3389/fimmu.2021.707972
  • Seder RA, Ahmed R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat Immunol. 2003;4(9):835–842. doi:10.1038/ni969
  • Braun M, Vaibhav K, Saad N, et al. Activation of Myeloid TLR4 mediates T lymphocyte polarization after traumatic brain injury. J Immunol. 2017;198(9):3615–3626. doi:10.4049/jimmunol.1601948
  • Ferrick DA, Schrenzel MD, Mulvania T, et al. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature. 1995;373(6511):255–257. doi:10.1038/373255a0
  • Li J, Zeng Z, Wu Q, et al. Immunological modulation of the Th1/Th2 shift by ionizing radiation in tumors (Review). Int J Oncol. 2021;59(1). doi:10.3892/ijo.2021.5230
  • Walker JA, McKenzie ANJ. TH2 cell development and function. Nat Rev Immunol. 2018;18(2):121–133. doi:10.1038/nri.2017.118
  • Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol. 2013;13(2):101–117. doi:10.1038/nri3369
  • Rana J, Biswas M. Regulatory T cell therapy: current and future design perspectives. Cell Immunol. 2020;356:104193. doi:10.1016/j.cellimm.2020.104193
  • Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–532. doi:10.1038/nri2343
  • Wang H, Wang Z, Wu Q, et al. Regulatory T cells in ischemic stroke. CNS Neurosci Ther. 2021;27(6):643–651. doi:10.1111/cns.13611
  • Stubbe T, Ebner F, Richter D, et al. Regulatory T cells accumulate and proliferate in the ischemic hemisphere for up to 30 days after MCAO. J Cereb Blood Flow Metab. 2013;33(1):37–47. doi:10.1038/jcbfm.2012.128
  • Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–691. doi:10.1182/blood-2012-04-426734
  • Ruhnau J, Schulze J, von Sarnowski B, et al. Reduced numbers and impaired function of regulatory T cells in peripheral blood of ischemic stroke patients. Mediators Inflamm. 2016;2016:2974605. doi:10.1155/2016/2974605
  • Song J, Kim YK. Animal models for the study of depressive disorder. CNS Neurosci Ther. 2021;27(6):633–642. doi:10.1111/cns.13622
  • Offner H, Subramanian S, Parker SM, et al. Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol. 2006;176(11):6523–6531. doi:10.4049/jimmunol.176.11.6523
  • Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke - implications for treatment. Nat Rev Neurol. 2019;15(8):473–481. doi:10.1038/s41582-019-0221-1
  • Guardalupi F, Sorrentino C, Corradi G, et al. A pro-inflammatory environment in bone marrow of Treg transplanted patients matches with graft-versus-leukemia effect. Leukemia. 2023;37(7):1572–1575. doi:10.1038/s41375-023-01932-x
  • Zhang W, Xiao D, Mao Q, et al. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther. 2023;8(1):267. doi:10.1038/s41392-023-01486-5
  • Oparaugo NC, Ouyang K, Nguyen NP, et al. Human regulatory T cells: understanding the role of tregs in select autoimmune skin diseases and post-transplant nonmelanoma skin cancers. Int J Mol Sci. 2023;24(2):1527.
  • Wang M, Thomson AW, Yu F, et al. Regulatory T lymphocytes as a therapy for ischemic stroke. Semin Immunopathol. 2023;45(3):329–346. doi:10.1007/s00281-022-00975-z
  • Halvorson T, Tuomela K, Levings MK. Targeting regulatory T cell metabolism in disease: novel therapeutic opportunities. Eur J Immunol. 2023;53(9):e2250002. doi:10.1002/eji.202250002
  • Leijte GP, Rimmelé T, Kox M, et al. Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit Care. 2020;24(1):110. doi:10.1186/s13054-020-2830-x
  • Asmussen A, Busch H-J, Helbing T, et al. Monocyte subset distribution and surface expression of HLA-DR and CD14 in patients after cardiopulmonary resuscitation. Sci Rep. 2021;11(1):12403. doi:10.1038/s41598-021-91948-z
  • Ziqing Z, Yunpeng L, Yiqi L, et al. Friends or foes: the mononuclear phagocyte system in ischemic stroke. Brain Pathol. 2023;33(2):e13151. doi:10.1111/bpa.13151
  • Chapman NM, Chi H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity. 2022;55(1):14–30. doi:10.1016/j.immuni.2021.12.012
  • Achmus L, Ruhnau J, Grothe S, et al. Stroke-induced modulation of myeloid-derived suppressor cells (MDSCs) and IL-10-producing regulatory monocytes. Front Neurol. 2020;11:577971. doi:10.3389/fneur.2020.577971
  • Platzer C, Döcke W-D, Volk H-D, et al. Catecholamines trigger IL-10 release in acute systemic stress reaction by direct stimulation of its promoter/enhancer activity in monocytic cells. J Neuroimmunol. 2000;105(1):31–38. doi:10.1016/S0165-5728(00)00205-8
  • Qin C, Yang S, Chu Y-H, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2022;7(1):215. doi:10.1038/s41392-022-01064-1
  • Jiang M, Yin P, Bai X, et al. Proinflammatory and anti-inflammatory genes in stroke pathogenesis. Curr Pharm Des. 2020;26(34):4220–4233. doi:10.2174/1381612826666200701212859
  • Meisel C, Schwab JM, Prass K, et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci. 2005;6(10):775–786. doi:10.1038/nrn1765
  • Anrather J, Iadecola C. Inflammation and Stroke: an Overview. Neurotherapeutics. 2016;13(4):661–670. doi:10.1007/s13311-016-0483-x
  • Piepke M, Clausen BH, Ludewig P, et al. Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response. J Neuroinflammation. 2021;18(1):265. doi:10.1186/s12974-021-02316-7
  • Alsbrook DL, Di Napoli M, Bhatia K, et al. Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 2023;23(8):407–431. doi:10.1007/s11910-023-01282-2
  • Dong C. Cytokine regulation and function in T cells. Annu Rev Immunol. 2021;39:51–76. doi:10.1146/annurev-immunol-061020-053702
  • Wang YR, Cui W-Q, Wu H-Y, et al. The role of T cells in acute ischemic stroke. Brain Res Bull. 2023;196:20–33. doi:10.1016/j.brainresbull.2023.03.005
  • Bishop EL, Gudgeon N, Dimeloe S. Control of T cell metabolism by cytokines and hormones. Front Immunol. 2021;12:653605. doi:10.3389/fimmu.2021.653605
  • Dirnagl U, Klehmet J, Braun JS, et al. Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke. 2007;38(2 Suppl):770–773. doi:10.1161/01.STR.0000251441.89665.bc
  • Urra X, Obach V, Chamorro A. Stroke induced immunodepression syndrome: from bench to bedside. Curr Mol Med. 2009;9(2):195–202. doi:10.2174/156652409787581574
  • Stanzione R, Forte M, Cotugno M, et al. Role of DAMPs and of leukocytes infiltration in ischemic stroke: insights from animal models and translation to the human disease. Cell Mol Neurobiol. 2022;42(3):545–556. doi:10.1007/s10571-020-00966-4
  • Li LZ, Huang -Y-Y, Yang Z-H, et al. Potential microglia-based interventions for stroke. CNS Neurosci Ther. 2020;26(3):288–296. doi:10.1111/cns.13291
  • Zeng J, Bao T, Yang K, et al. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: a review. Front Immunol. 2022;13:1047550. doi:10.3389/fimmu.2022.1047550
  • Karakas M, Koenig W. Sympathetic nervous system: a crucial player modulating residual cardiovascular risk. Circ Res. 2013;112(1):13–16. doi:10.1161/CIRCRESAHA.112.281097
  • Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213. doi:10.1186/s12974-014-0213-4
  • Heeg M, Kaech S. Sympathetic nerves suppress T-cell responses in infection and in cancer. Nature. 2023;2023:1. doi:10.1038/d41586-023-02776-2
  • Mueller SN. Neural control of immune cell trafficking. J Exp Med. 2022;219(3). doi:10.1084/jem.20211604
  • Franceschini R, Tenconi GL, Zoppoli F, et al. Endocrine abnormalities and outcome of ischaemic stroke. Biomed Pharmacother. 2001;55(8):458–465. doi:10.1016/S0753-3322(01)00086-5
  • Datta A, Saha C, Godse P, et al. Neuroendocrine regulation in stroke. Trends Endocrinol Metab. 2023;34(5):260–277. doi:10.1016/j.tem.2023.02.005
  • Elkind MSV, Boehme AK, Smith CJ, et al. Infection as a stroke risk factor and determinant of outcome after stroke. Stroke. 2020;51(10):3156–3168. doi:10.1161/STROKEAHA.120.030429
  • Divani AA, Andalib S, Di Napoli M, et al. Coronavirus Disease 2019 and stroke: clinical manifestations and pathophysiological insights. J Stroke Cerebrovasc Dis. 2020;29(8):104941. doi:10.1016/j.jstrokecerebrovasdis.2020.104941
  • Poisson SN, Johnston SC, Josephson SA. Urinary tract infections complicating stroke: mechanisms, consequences, and possible solutions. Stroke. 2010;41(4):e180–4. doi:10.1161/STROKEAHA.109.576413
  • Ahmed R, Mhina C, Philip K, et al. Age- and sex-specific trends in medical complications after acute ischemic stroke in the United States. Neurology. 2023;100(12):e1282–e1295. doi:10.1212/WNL.0000000000206749
  • Donkor ES. Stroke in the 21st Century: a Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res Treat. 2018;2018:3238165. doi:10.1155/2018/3238165
  • Muñoz Venturelli P, Li X, Middleton S, et al. Impact of evidence-based stroke care on patient outcomes: a multilevel analysis of an international study. J Am Heart Assoc. 2019;8(13):e012640. doi:10.1161/JAHA.119.012640
  • Minhas JS, Wang X, Lavados PM, et al. Blood pressure variability and outcome in acute ischemic and hemorrhagic stroke: a post hoc analysis of the HeadPoST study. J Hum Hypertens. 2019;33(5):411–418. doi:10.1038/s41371-019-0193-z
  • Group GNDC, Abajobir AA, Abate KH. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol. 2017;16(11):877–897. doi:10.1016/S1474-4422(17)30299-5
  • Santos Samary C, Pelosi P, Leme Silva P, et al. Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Crit Care. 2016;20(1):391. doi:10.1186/s13054-016-1573-1
  • Shim R, Wong CHY. Complex interplay of multiple biological systems that contribute to post-stroke infections. Brain Behav Immun. 2018;70:10–20. doi:10.1016/j.bbi.2018.03.019
  • Han G, Ceilley R. Chronic wound healing: a review of current management and treatments. Adv Ther. 2017;34(3):599–610. doi:10.1007/s12325-017-0478-y
  • Marto JP, Strambo D, Livio F, et al. Drugs associated with ischemic stroke: a review for clinicians. Stroke. 2021;52(10):e646–e659. doi:10.1161/STROKEAHA.120.033272
  • Liu L, Xiong X-Y, Zhang Q, et al. The efficacy of prophylactic antibiotics on post-stroke infections: an updated systematic review and meta-analysis. Sci Rep. 2016;6:36656. doi:10.1038/srep36656
  • Wechsler LR, Bates D, Stroemer P, et al. Cell therapy for chronic stroke. Stroke. 2018;49(5):1066–1074. doi:10.1161/STROKEAHA.117.018290
  • Richards LG, Cramer SC. Advances in stroke recovery therapeutics. Stroke. 2022;53(1):260–263. doi:10.1161/STROKEAHA.121.038018
  • Duncan PW, Bushnell C, Sissine M, et al. Comprehensive stroke care and outcomes: time for a paradigm shift. Stroke. 2021;52(1):385–393. doi:10.1161/STROKEAHA.120.029678
  • Shcharbina N, Shcharbin D, Bryszewska M. Nanomaterials in stroke treatment: perspectives. Stroke. 2013;44(8):2351–2355. doi:10.1161/STROKEAHA.113.001298
  • Song G, Zhao M, Chen H, et al. The role of nanomaterials in stroke treatment: targeting oxidative stress. Oxid Med Cell Longev. 2021;2021:8857486. doi:10.1155/2021/8857486
  • Yuan J, Li L, Yang Q, et al. Targeted treatment of ischemic stroke by bioactive nanoparticle-derived reactive oxygen species responsive and inflammation-resolving nanotherapies. ACS Nano. 2021;15(10):16076–16094. doi:10.1021/acsnano.1c04753
  • Bonnard T, Gauberti M, Martinez de Lizarrondo S, et al. Recent advances in nanomedicine for ischemic and hemorrhagic stroke. Stroke. 2019;50(5):1318–1324. doi:10.1161/STROKEAHA.118.022744
  • Dong X, Gao J, Su Y, et al. Nanomedicine for ischemic stroke. Int J Mol Sci. 2020;21(20):7600. doi:10.3390/ijms21207600
  • Amani H, Habibey R, Shokri F, et al. Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Sci Rep. 2019;9(1):6044. doi:10.1038/s41598-019-42633-9
  • Hua S, de Matos MBC, Metselaar JM, et al. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol. 2018;9:790. doi:10.3389/fphar.2018.00790
  • Wu D, Chen Q, Chen X, et al. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther. 2023;8(1):217. doi:10.1038/s41392-023-01481-w
  • Pinheiro RGR, Coutinho AJ, Pinheiro M, et al. Nanoparticles for targeted brain drug delivery: what do we know? Int J Mol Sci. 2021;22(21):11654. doi:10.3390/ijms222111654
  • Hajal C, Offeddu GS, Shin Y, et al. Engineered human blood-brain barrier microfluidic model for vascular permeability analyses. Nat Protoc. 2022;17(1):95–128. doi:10.1038/s41596-021-00635-w
  • Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20(1):33–48. doi:10.1038/s41571-022-00699-x
  • Est-Witte SE, Livingston NK, Omotoso MO, et al. Nanoparticles for generating antigen-specific T cells for immunotherapy. Semin Immunol. 2021;56:101541. doi:10.1016/j.smim.2021.101541
  • Sohn HS, Choi JW, Jhun J, et al. Tolerogenic nanoparticles induce type II collagen-specific regulatory T cells and ameliorate osteoarthritis. Sci Adv. 2022;8(47):eabo5284. doi:10.1126/sciadv.abo5284
  • Patel SK, Billingsley MM, Frazee C, et al. Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells. J Control Release. 2022;347:521–532. doi:10.1016/j.jconrel.2022.05.020
  • Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16:223–249. doi:10.1146/annurev-pathol-042020-042741
  • Billingsley MM, Singh N, Ravikumar P, et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 2020;20(3):1578–1589. doi:10.1021/acs.nanolett.9b04246
  • Ying N, Lin X, Xie M, et al. Effect of surface ligand modification on the properties of anti-tumor nanocarrier. Colloids Surf B Biointerfaces. 2022;220:112944. doi:10.1016/j.colsurfb.2022.112944
  • Sanità G, Carrese B, Lamberti A. Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Front Mol Biosci. 2020;7:587012. doi:10.3389/fmolb.2020.587012
  • Kosmides AK, Sidhom J-W, Fraser A, et al. Dual targeting nanoparticle stimulates the immune system to inhibit tumor growth. ACS Nano. 2017;11(6):5417–5429. doi:10.1021/acsnano.6b08152
  • Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021;18(2):85–100. doi:10.1038/s41571-020-0426-7
  • Zhou F, Wang M, Luo T, et al. Photo-activated chemo-immunotherapy for metastatic cancer using a synergistic graphene nanosystem. Biomaterials. 2021;265:120421. doi:10.1016/j.biomaterials.2020.120421
  • Lenders V, Koutsoumpou X, Sargsian A, et al. Biomedical nanomaterials for immunological applications: ongoing research and clinical trials. Nanoscale Adv. 2020;2(11):5046–5089. doi:10.1039/D0NA00478B
  • Alshawwa SZ, Kassem AA, Farid RM, et al. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022;14(4):883. doi:10.3390/pharmaceutics14040883
  • Wu P, Han J, Gong Y, et al. Nanoparticle-based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: current advances and applications. Pharmaceutics. 2022;14(10):1990. doi:10.3390/pharmaceutics14101990
  • Nikitin MP, Zelepukin IV, Shipunova VO, et al. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nat Biomed Eng. 2020;4(7):717–731. doi:10.1038/s41551-020-0581-2
  • Azevedo C, Macedo MH, Sarmento B. Strategies for the enhanced intracellular delivery of nanomaterials. Drug Discov Today. 2018;23(5):944–959. doi:10.1016/j.drudis.2017.08.011
  • Mena-Giraldo P, Pérez-Buitrago S, Londoño-Berrío M, et al. Photosensitive nanocarriers for specific delivery of cargo into cells. Sci Rep. 2020;10(1):2110. doi:10.1038/s41598-020-58865-z
  • Ashley CE, Carnes EC, Phillips GK, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater. 2011;10(5):389–397. doi:10.1038/nmat2992
  • Qin YT, Li Y-P, He X-W, et al. Biomaterials promote. Front Immunol. 2023;14:1165576. doi:10.3389/fimmu.2023.1165576
  • Saini S, Dagar P, Gupta S, et al. Nano-enabled immunomodulation. Nat Nanotechnol. 2021;16(1):1. doi:10.1038/s41565-020-00842-8
  • Zhang B, Sun J, Wang Y, et al. Site-specific PEGylation of interleukin-2 enhances immunosuppression via the sustained activation of regulatory T cells. Nat Biomed Eng. 2021;5(11):1288–1305. doi:10.1038/s41551-021-00797-8
  • Bruch GE, Fernandes LF, Bassi BLT, et al. Liposomes for drug delivery in stroke. Brain Res Bull. 2019;152:246–256. doi:10.1016/j.brainresbull.2019.07.015
  • Fukuta T, Asai T, Yanagida Y, et al. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke. FASEB J. 2017;31(5):1879–1890. doi:10.1096/fj.201601209R
  • Campos-Martorell M, Cano-Sarabia M, Simats A, et al. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats. Int J Nanomed. 2016;11:3035–3048. doi:10.2147/IJN.S107292
  • Fukuta T, Ishii T, Asai T, et al. Applications of liposomal drug delivery systems to develop neuroprotective agents for the treatment of ischemic stroke. Biol Pharm Bull. 2019;42(3):319–326. doi:10.1248/bpb.b18-00683
  • Lu Y, Li C, Chen Q, et al. Microthrombus-targeting micelles for neurovascular remodeling and enhanced microcirculatory perfusion in acute ischemic stroke. Adv Mater. 2019;31(21):e1808361. doi:10.1002/adma.201808361
  • Lu H, Li S, Dai D, et al. Enhanced treatment of cerebral ischemia-Reperfusion injury by intelligent nanocarriers through the regulation of neurovascular units. Acta Biomater. 2022;147:314–326. doi:10.1016/j.actbio.2022.05.021
  • Wu H, Peng B, Mohammed FS, et al. Brain targeting, antioxidant polymeric nanoparticles for stroke drug delivery and therapy. Small. 2022;18(22):e2107126. doi:10.1002/smll.202107126
  • Bernardo-Castro S, Albino I, Barrera-Sandoval ÁM, et al. Therapeutic nanoparticles for the different phases of ischemic stroke. Life. 2021;11(6). doi:10.3390/life11060482
  • Wu H, Gao X, Luo Y, et al. Targeted delivery of chemo-sonodynamic therapy via brain targeting, glutathione-consumable polymeric nanoparticles for effective brain cancer treatment. Adv Sci. 2022;9(28):e2203894. doi:10.1002/advs.202203894
  • Chis AA, Dobrea C, Morgovan C, et al. Applications and limitations of dendrimers in biomedicine. Molecules. 2020;25(17):3982. doi:10.3390/molecules25173982
  • Hong J, Kang M, Jung M, et al. T-cell-derived nanovesicles for cancer immunotherapy. Adv Mater. 2021;33(33):e2101110. doi:10.1002/adma.202101110
  • Kang M, Hong J, Jung M, et al. T-cell-mimicking nanoparticles for cancer immunotherapy. Adv Mater. 2020;32(39):e2003368. doi:10.1002/adma.202003368
  • Zha S, Liu H, Li H, et al. Functionalized nanomaterials capable of crossing the blood-brain barrier. ACS Nano. 2024;18(3):1820–1845. doi:10.1021/acsnano.3c10674
  • Hoshyar N, Gray S, Han H, et al. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11(6):673–692. doi:10.2217/nnm.16.5
  • Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–5591. doi:10.2147/IJN.S36111
  • Zhang D, Wei L, Zhong M, et al. The morphology and surface charge-dependent cellular uptake efficiency of upconversion nanostructures revealed by single-particle optical microscopy. Chem Sci. 2018;9(23):5260–5269. doi:10.1039/C8SC01828F
  • Yetisgin AA, Cetinel S, Zuvin M, et al. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193.
  • Weng J, Tong HHY, Chow SF. In vitro release study of the polymeric drug nanoparticles: development and validation of a novel method. Pharmaceutics. 2020;12(8):732. doi:10.3390/pharmaceutics12080732
  • Herdiana Y, Wathoni N, Shamsuddin S, et al. Drug release study of the chitosan-based nanoparticles. Heliyon. 2022;8(1):e08674. doi:10.1016/j.heliyon.2021.e08674
  • Mitchell MJ, Billingsley MM, Haley RM, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. doi:10.1038/s41573-020-0090-8
  • Zhao J, Roberts A, Wang Z, et al. Emerging Role of PD-1 in the central nervous system and brain diseases. Neurosci Bull. 2021;37:1188–1202. doi:10.1007/s12264-021-00683-y
  • Chauhan P, Lokensgard JR. Glial cell expression of PD-L1. Int J Mol Sci. 2019;20(7):1677. doi:10.3390/ijms20071677
  • Bodhankar S, Chen Y, Vandenbark AA, et al. PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation. 2013;10:111. doi:10.1186/1742-2094-10-111
  • Bodhankar S, Chen Y, Lapato A, et al. PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke. 2015;46(10):2926–2934. doi:10.1161/STROKEAHA.115.010592
  • Wang JJ, Jiang L-Q, He B, et al. The association of CTLA-4 and CD28 gene polymorphisms with idiopathic ischemic stroke in the paediatric population. Int J Immunogenet. 2009;36(2):113–118. doi:10.1111/j.1744-313X.2009.00833.x
  • Ma J, Shen L, Bao L, et al. A novel prognosis prediction model, including cytotoxic T lymphocyte-associated antigen-4, ischemia-modified albumin, lipoprotein-associated phospholipase A2, glial fibrillary acidic protein, and homocysteine, for ischemic stroke in the Chinese hypertensive population. J Clin Lab Anal. 2021;35(5):e23756. doi:10.1002/jcla.23756
  • Han B, Song Y, Park J, et al. Nanomaterials to improve cancer immunotherapy based on ex vivo engineered T cells and NK cells. J Control Release. 2022;343:379–391. doi:10.1016/j.jconrel.2022.01.049
  • Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer. 2023;22(1):94. doi:10.1186/s12943-023-01797-9
  • Mohamed M, Abu Lila AS, Shimizu T, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20(1):710–724. doi:10.1080/14686996.2019.1627174
  • Jang SF, Liu WH, Song WS, et al. Nanomedicine-based neuroprotective strategies in patient specific-iPSC and personalized medicine. Int J Mol Sci. 2014;15(3):3904–3925.
  • Khalil NM, Mainardes RM. Colloidal polymeric nanoparticles and brain drug delivery. Curr Drug Deliv. 2009;6(3):261–273. doi:10.2174/156720109788680912
  • Knauer N, Pashkina E, Aktanova A, et al. Effects of cationic dendrimers and their complexes with microRNAs on immunocompetent cells. Pharmaceutics. 2022;15(1):148. doi:10.3390/pharmaceutics15010148
  • Apartsin EK. Dendrimers for drug delivery: where do we stand in 2023? Pharmaceutics. 2023;15(12):2740. doi:10.3390/pharmaceutics15122740
  • Reisch A, Klymchenko AS. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging. Small. 2016;12(15):1968–1992. doi:10.1002/smll.201503396
  • Tang X, Zhu Y, Guan W, et al. Advances in nanosensors for cardiovascular disease detection. Life Sci. 2022;305:120733. doi:10.1016/j.lfs.2022.120733
  • Asl SK, Rahimzadegan M. The recent progress in the early diagnosis of acute myocardial infarction based on myoglobin biomarker: nano-aptasensors approaches. J Pharm Biomed Anal. 2022;211:114624. doi:10.1016/j.jpba.2022.114624
  • Allison SJ. Nanosensors enable early detection of acute T cell-mediated rejection of transplants. Nat Rev Nephrol. 2019;15(5):253. doi:10.1038/s41581-019-0134-7
  • Ma B, Liu X, Zhang Z, et al. A digital nanoplasmonic microarray immunosensor for multiplexed cytokine monitoring during CAR T-cell therapy from a leukemia tumor microenvironment model. Biosens Bioelectron. 2023;230:115247. doi:10.1016/j.bios.2023.115247
  • Allen GM, Frankel NW, Reddy NR, et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science. 2022;378(6625):eaba1624. doi:10.1126/science.aba1624
  • Woźniak M, Płoska A, Siekierzycka A, et al. Molecular imaging and nanotechnology-emerging tools in diagnostics and therapy. Int J Mol Sci. 2022;23(5):2658. doi:10.3390/ijms23052658
  • Li C, Han C, Duan S, et al. Visualizing T-cell responses: the T-Cell PET imaging toolbox. J Nucl Med. 2022;63(2):183–188. doi:10.2967/jnumed.121.261976
  • Bhatnagar P, Alauddin M, Bankson JA, et al. Tumor lysing genetically engineered T cells loaded with multi-modal imaging agents. Sci Rep. 2014;4:4502. doi:10.1038/srep04502
  • Ezike TC, Okpala US, Onoja UL, et al. Advances in drug delivery systems, challenges and future directions. Heliyon. 2023;9(6):e17488. doi:10.1016/j.heliyon.2023.e17488
  • Aljabali AA, Obeid MA, Bashatwah RM, et al. Nanomaterials and their impact on the immune system. Int J Mol Sci. 2023;24(3):2008. doi:10.3390/ijms24032008
  • Wang Y, Yin Q, Yang D, et al. LCP1 knockdown in monocyte-derived macrophages: mitigating ischemic brain injury and shaping immune cell signaling and metabolism. Theranostics. 2024;14(1):159–175. doi:10.7150/thno.88678
  • Xie J, Shen Z, Anraku Y, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials. 2019;224:119491. doi:10.1016/j.biomaterials.2019.119491
  • Pawar B, Vasdev N, Gupta T, et al. Current update on transcellular brain drug delivery. Pharmaceutics. 2022;14(12):2719. doi:10.3390/pharmaceutics14122719
  • Fisher DG, Price RJ. Recent advances in the use of focused ultrasound for magnetic resonance image-guided therapeutic nanoparticle delivery to the central nervous system. Front Pharmacol. 2019;10:1348. doi:10.3389/fphar.2019.01348