111
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

How Biodegradable Polymers Can be Effective Drug Delivery Systems for Cannabinoids? Prospectives and Challenges

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4607-4649 | Received 18 Jan 2024, Accepted 15 Apr 2024, Published online: 23 May 2024

References

  • Lewis M, Russo E, Smith K. Pharmacological Foundations of Cannabis Chemovars. Planta Med. 2018;84(04):225–233. doi:10.1055/s-0043-122240
  • Huestis MA. Human Cannabinoid Pharmacokinetics. C&b. 2007;4(8):1770–1804. doi:10.1002/cbdv.200790152
  • Ward SJ, Lichtman AH, Piomelli D, Parker LA. Cannabinoids and Cancer Chemotherapy-Associated Adverse Effects. JNCI Monogr. 2021;2021(58):78–85. doi:10.1093/jncimonographs/lgab007
  • Mackie K. Distribution of Cannabinoid Receptors in the Central and Peripheral Nervous System. In: Pertwee RG editor. Cannabinoids. Vol 168. Handbook of Experimental Pharmacology. Springer-Verlag; 2005:299–325. doi:10.1007/3-540-26573-2_10
  • Pertwee RG. Cannabinoid receptors and pain. Progress Neurobiol. 2001;63(5):569–611. doi:10.1016/S0301-0082(00)00031-9
  • Galiegue S, Mary S, Marchand J, et al. Expression of Central and Peripheral Cannabinoid Receptors in Human Immune Tissues and Leukocyte Subpopulations. Eur J Biochem. 1995;232(1):54–61. doi:10.1111/j.1432-1033.1995.tb20780.x
  • Ofek O, Karsak M, Leclerc N, et al. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proc Natl Acad Sci USA. 2006;103(3):696–701. doi:10.1073/pnas.0504187103
  • Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H. Cannabinoids for Cancer Treatment: progress and Promise. Cancer Res. 2008;68(2):339–342. doi:10.1158/0008-5472.CAN-07-2785
  • Fernández Ó. THC:CBD in Daily Practice: available Data from UK, Germany and Spain. Eur Neurol. 2016;75(Suppl. 1):1–3. doi:10.1159/000444234
  • Whiting PF, Wolff RF, Deshpande S, et al. Cannabinoids for Medical Use: a Systematic Review and Meta-analysis. JAMA. 2015;313(24):2456. doi:10.1001/jama.2015.6358
  • MacCallum CA, Russo EB. Practical considerations in medical cannabis administration and dosing. Eur J Internal Med. 2018;49:12–19. doi:10.1016/j.ejim.2018.01.004
  • Pagano C, Navarra G, Coppola L, Avilia G, Bifulco M, Laezza C. Cannabinoids: therapeutic Use in Clinical Practice. IJMS. 2022;23(6):3344. doi:10.3390/ijms23063344
  • O’Sullivan SE, Jensen SS, Kolli AR, Nikolajsen GN, Bruun HZ, Hoeng J. Strategies to Improve Cannabidiol Bioavailability and Drug Delivery. Pharmaceuticals. 2024;17(2):244. doi:10.3390/ph17020244
  • Legare CA, Raup-Konsavage WM, Vrana KE. Therapeutic Potential of Cannabis, Cannabidiol, and Cannabinoid-Based Pharmaceuticals. Pharmacology. 2022;107(3–4):131–149. doi:10.1159/000521683
  • Grymel M, Grabiec P, Nurkowska K. Cannabidiol - characteristic and application in cosmetology and dermatology. Aesth Cosmetol Med. 2021;10(6):299–303. doi:10.52336/acm.2021.10.6.06
  • Fairbairn JW, Liebmann JA, Rowan MG. The stability of cannabis and its preparations on storage. J Pharm Pharmacol. 2011;28(1):1–7. doi:10.1111/j.2042-7158.1976.tb04014.x
  • Pacifici R, Marchei E, Salvatore F, Guandalini L, Busardò FP, Pichini S. Evaluation of long-term stability of cannabinoids in standardized preparations of cannabis flowering tops and cannabis oil by ultra-high-performance liquid chromatography tandem mass spectrometry. Clin Chem Lab Med. 2018;56(4):94–96. doi:10.1515/cclm-2017-0758
  • van Drooge DJ, Hinrichs WLJ, Wegman KAM, Visser MR, Eissens AC, Frijlink HW. Solid dispersions based on inulin for the stabilisation and formulation of Δ9-tetrahydrocannabinol. Eur. J. Pharm. Sci. 2004;21(4):511–518. doi:10.1016/j.ejps.2003.11.014
  • Cherniakov I, Izgelov D, Domb AJ, Hoffman A. The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model. Eur. J. Pharm. Sci. 2017;109:21–30. doi:10.1016/j.ejps.2017.07.003
  • Cherniakov I, Izgelov D, Barasch D, Davidson E, Domb AJ, Hoffman A. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J Control Release. 2017;266:1–7. doi:10.1016/j.jconrel.2017.09.011
  • Stella B, Baratta F, Della Pepa C, Arpicco S, Gastaldi D, Dosio F. Cannabinoid Formulations and Delivery Systems: current and Future Options to Treat Pain. Drugs. 2021;81(13):1513–1557. doi:10.1007/s40265-021-01579-x
  • Grotenhermen F. Pharmacokinetics and Pharmacodynamics of Cannabinoids. Clin. Pharmacokinet. 2003;42(4):327–360. doi:10.2165/00003088-200342040-00003
  • Bonhomme-Faivre L, Benyamina A, Reynaud M, Farinotti R, Abbara C. Disposition of Δ 9 tetrahydrocannabinol in CF1 mice deficient in mdr1a P-glycoprotein. Addict. Biol. 2008;13(3–4):295–300. doi:10.1111/j.1369-1600.2008.00096.x
  • Millar SA, Stone NL, Yates AS, O’Sullivan SE. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front Pharmacol. 2018;9:1365. doi:10.3389/fphar.2018.01365
  • Nelson KM, Bisson J, Singh G, et al. The Essential Medicinal Chemistry of Cannabidiol (CBD). J Med Chem. 2020;63(21):12137–12155. doi:10.1021/acs.jmedchem.0c00724
  • Reddy TS, Zomer R, Mantri N. Nanoformulations as a strategy to overcome the delivery limitations of cannabinoids. Phytother Res. 2023;37(4):1526–1538. doi:10.1002/ptr.7742
  • Maurya N, Velmurugan BK. Therapeutic applications of cannabinoids. Chem. Biol. Interact. 2018;293:77–88. doi:10.1016/j.cbi.2018.07.018
  • Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliative Care Pharmacother. 2021;35(3):175–214. doi:10.1080/15360288.2021.1925386
  • Mercadante S. Cancer Pain Treatment Strategies in Patients with Cancer. Drugs. 2022;82(13):1357–1366. doi:10.1007/s40265-022-01780-6
  • Al Malyan M, Becchi C, Nikkola L, et al. Polymer-Based Biodegradable Drug Delivery Systems in Pain Management. J Craniofacial Surgery. 2006;17(2):302–313. doi:10.1097/00001665-200603000-00018
  • Anekar AA, Hendrix JM, Cascella M. WHO Analgesic Ladder. StatPearls Publishing; 2023.
  • Yang J, Bauer BA, Wahner-Roedler DL, Chon TY, Xiao L. The Modified WHO Analgesic Ladder: is It Appropriate for Chronic Non-Cancer Pain? JPR. 2020;13:411–417. doi:10.2147/JPR.S244173
  • Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging and Disease. 2018;9(1):143. doi:10.14336/AD.2017.0306
  • Mitra R, Jones S. Adjuvant Analgesics in Cancer Pain: a Review. Am J Hosp Palliat Care. 2012;29(1):70–79. doi:10.1177/1049909111413256
  • Lussier D, Huskey AG, Portenoy RK. Adjuvant Analgesics in Cancer Pain Management. oncologist. 2004;9(5):571–591. doi:10.1634/theoncologist.9-5-571
  • Jahromi B, Pirvulescu I, Candido KD, Knezevic NN. Herbal Medicine for Pain Management: efficacy and Drug Interactions. Pharmaceutics. 2021;13(2):251. doi:10.3390/pharmaceutics13020251
  • Nahin R, Barnes P, Stussman B, Bloom B. Costs of complementary and alternative medicine (CAM) and frequency of visits to CAM practitioners: United States, 2007. Natl Health Stat Report. 2009;30(18):1–14.
  • Weiner DK, Ernst E. Complementary and Alternative Approaches to the Treatment of Persistent Musculoskeletal Pain. Clin J Pain. 2004;20(4):244–255. doi:10.1097/00002508-200407000-00006
  • Cai Y, Luo Q, Sun M, Corke H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004;74(17):2157–2184. doi:10.1016/j.lfs.2003.09.047
  • Li SH, Li L, Yang RN, Liang SD. Compounds of traditional Chinese medicine and neuropathic pain. Chinese J Nat Med. 2020;18(1):28–35. doi:10.1016/S1875-5364(20)30002-9
  • Cichewicz DL. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004;74(11):1317–1324. doi:10.1016/j.lfs.2003.09.038
  • Finn DP, Haroutounian S, Hohmann AG, Krane E, Soliman N, Rice AS. Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain. 2021;162(1):5–25. doi:10.1097/j.pain.0000000000002268
  • Console-Bram L, Marcu J, Abood ME. Cannabinoid receptors: nomenclature and pharmacological principles. Prog Neuro Psychopharmacol Biol Psychiatry. 2012;38(1):4–15. doi:10.1016/j.pnpbp.2012.02.009
  • Meng H, Deshpande A. Cannabinoids in chronic non-cancer pain medicine: moving from the bench to the bedside. BJA Educ. 2020;20(9):305–311. doi:10.1016/j.bjae.2020.05.002
  • Jose A, Thomas L, Baburaj G, Munisamy M, Rao M. Cannabinoids as an alternative option for conventional analgesics in cancer pain management: a pharmacogenomics perspective. Indian J Palliat Care. 2020;26(1):129. doi:10.4103/IJPC.IJPC_155_19
  • Safi K, Sobieraj J, Błaszkiewicz M, Żyła J, Salata B, Dzierżanowski T. Tetrahydrocannabinol and Cannabidiol for Pain Treatment—An Update on the Evidence. Biomedicines. 2024;12(2):307. doi:10.3390/biomedicines12020307
  • Mücke M, Phillips T, Radbruch L, Petzke F, Häuser W. Cannabis-based medicines for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2018;2020(7):182. doi:10.1002/14651858.CD012182.pub2
  • Johal H, Vannabouathong C, Chang Y, Zhu M, Bhandari M. Medical cannabis for orthopaedic patients with chronic musculoskeletal pain: does evidence support its use? Therapeutic Adv Musculoskeletal. 2020;12. doi:10.1177/1759720X20937968
  • van de Donk T, Niesters M, Kowal MA, Olofsen E, Dahan A, van Velzen M. An experimental randomized study on the analgesic effects of pharmaceutical-grade cannabis in chronic pain patients with fibromyalgia. Pain. 2019;160(4):860–869. doi:10.1097/j.pain.0000000000001464
  • Chaves C, Bittencourt PCT, Pelegrini A. Ingestion of a THC-Rich Cannabis Oil in People with Fibromyalgia: a Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Pain Med. 2020;21(10):2212–2218. doi:10.1093/pm/pnaa303
  • Stockings E, Campbell G, Hall WD, et al. Cannabis and cannabinoids for the treatment of people with chronic noncancer pain conditions: a systematic review and meta-analysis of controlled and observational studies. Pain. 2018;159(10):1932–1954. doi:10.1097/j.pain.0000000000001293
  • Holt A, Nouhravesh N, Strange JE, et al. Cannabis for chronic pain: cardiovascular safety in a nationwide Danish study. Eur Heart J. 2024;45(6):475–484. doi:10.1093/eurheartj/ehad834
  • Erkkinen MG, Kim MO, Geschwind MD. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol. 2018;10(4):a033118. doi:10.1101/cshperspect.a033118
  • Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577–1590. doi:10.1016/S0140-6736(20)32205-4
  • Martín-Moreno AM, Reigada D, Ramírez BG, et al. Cannabidiol and Other Cannabinoids Reduce Microglial Activation In Vitro and In Vivo: relevance to Alzheimer’s Disease. Mol Pharmacol. 2011;79(6):964–973. doi:10.1124/mol.111.071290
  • Franke T, Irwin C, Beindorff N, Bouter Y, Bouter C. Effects of tetrahydrocannabinol treatment on brain metabolism and neuron loss in a mouse model of sporadic Alzheimer’s disease. Nuklearmedizin. 2019;58(2):9. doi:10.1055/s-0039-1683689
  • Ruthirakuhan MT, Herrmann N, Gallagher D, et al. Investigating the safety and efficacy of nabilone for the treatment of agitation in patients with moderate-to-severe Alzheimer’s disease: study protocol for a cross-over randomized controlled trial. Contemporary Clin Trials Commun. 2019;15:100385. doi:10.1016/j.conctc.2019.100385
  • Ruthirakuhan M, Herrmann N, Andreazza AC, et al. Agitation, Oxidative Stress, and Cytokines in Alzheimer Disease: biomarker Analyses From a Clinical Trial With Nabilone for Agitation. J Geriatr Psychiatry Neurol. 2020;33(4):175–184. doi:10.1177/0891988719874118
  • Davie CA. A review of Parkinson’s disease. Br Med Bul. 2008;86(1):109–127. doi:10.1093/bmb/ldn013
  • Wang Q, Liu Y, Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener. 2015;4(1):19. doi:10.1186/s40035-015-0042-0
  • Zuardi A, Crippa J, Hallak J, et al. Cannabidiol for the treatment of psychosis in Parkinson’s disease. J Psychopharmacol. 2009;23(8):979–983. doi:10.1177/0269881108096519
  • De Faria SM, De Morais Fabrício D, Tumas V, et al. Effects of acute cannabidiol administration on anxiety and tremors induced by a Simulated Public Speaking Test in patients with Parkinson’s disease. J Psychopharmacol. 2020;34(2):189–196. doi:10.1177/0269881119895536
  • Chagas MHN, Zuardi AW, Tumas V, et al. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. J Psychopharmacol. 2014;28(11):1088–1098. doi:10.1177/0269881114550355
  • Leehey MA, Liu Y, Hart F, et al. Safety and Tolerability of Cannabidiol in Parkinson Disease: an Open Label, Dose-Escalation Study. Cannabis Cannabinoid Res. 2020;5(4):326–336. doi:10.1089/can.2019.0068
  • Peball M, Krismer F, Knaus H, et al. Non‐Motor Symptoms in Parkinson’s Disease are Reduced by Nabilone. Ann. Neurol. 2020;88(4):712–722. doi:10.1002/ana.25864
  • Falco-Walter J. Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Semin Neurol. 2020;40(6):617–623. doi:10.1055/s-0040-1718719
  • Clement AB, Hawkins EG, Lichtman AH, Cravatt BF. Increased Seizure Susceptibility and Proconvulsant Activity of Anandamide in Mice Lacking Fatty Acid Amide Hydrolase. J Neurosci. 2003;23(9):3916–3923. doi:10.1523/JNEUROSCI.23-09-03916.2003
  • Marsicano G, Goodenough S, Monory K, et al. CB1 Cannabinoid Receptors and On-Demand Defense Against Excitotoxicity. Science. 2003;302(5642):84–88. doi:10.1126/science.1088208
  • Jones NA, Hill AJ, Smith I, et al. Cannabidiol Displays Antiepileptiform and Antiseizure Properties In Vitro and In Vivo. J Pharmacol Exp Ther. 2010;332(2):569–577. doi:10.1124/jpet.109.159145
  • Devinsky O, Nabbout R, Miller I, et al. Long‐term cannabidiol treatment in patients with Dravet syndrome: an open‐label extension trial. Epilepsia. 2019;60(2):294–302. doi:10.1111/epi.14628
  • Devinsky O, Patel AD, Thiele EA, et al. Randomized, dose-ranging safety trial of cannabidiol in Dravet syndrome. Neurology. 2018;90(14):e1204–e1211. doi:10.1212/WNL.0000000000005254
  • Gaston TE, Szaflarski M, Hansen B, Bebin EM, Szaflarski JP. Quality of life in adults enrolled in an open-label study of cannabidiol (CBD) for treatment-resistant epilepsy. Epilepsy Behav. 2019;95:10–17. doi:10.1016/j.yebeh.2019.03.035
  • Laux LC, Bebin EM, Checketts D, et al. Long-term safety and efficacy of cannabidiol in children and adults with treatment resistant Lennox-Gastaut syndrome or Dravet syndrome: expanded access program results. Epilepsy Res. 2019;154:13–20. doi:10.1016/j.eplepsyres.2019.03.015
  • Shrivastava A, Gupta JK. Enlightening Pharmacological Mechanisms of Cannabidiol in Epilepsy: a Comprehensive Review on their Neuroprotective Potential. Ind J Pharm Edu Res. 2023;58(1):15–20. doi:10.5530/ijper.58.1.2
  • Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816–1821. doi:10.1177/1352458520970841
  • Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391(10130):1622–1636. doi:10.1016/S0140-6736(18)30481-1
  • Novotna A, Mares J, Ratcliffe S, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex ®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis: Sativex for refractory spasticity in MS. Eur J Neurol. 2011;18(9):1122–1131. doi:10.1111/j.1468-1331.2010.03328.x
  • Collin C, Davies P, Mutiboko IK, Ratcliffe S. Randomized controlled trial of cannabis-based medicine in spasticity caused by multiple sclerosis: cannabis-based medicine in spasticity by multiple sclerosis. Eur J Neurol. 2007;14(3):290–296. doi:10.1111/j.1468-1331.2006.01639.x
  • Markovà J, Essner U, Akmaz B, et al. Sativex ® as add-on therapy vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial. Int J Neurosci. 2019;129(2):119–128. doi:10.1080/00207454.2018.1481066
  • University of California, Davis. Cannabis for Spasticity in Multiple Sclerosis: a Placebo-Controlled Study (Clinical Trial Registration No. NCT00682929); 2018. Available from: https://clinicaltrials.gov/ct2/show/NCT00682929. Accessed May 10, 2024.
  • Zajicek JP, Hobart JC, Slade A, Barnes D, Mattison PG, on behalf of the MUSEC Research Group. MUltiple Sclerosis and Extract of Cannabis: results of the MUSEC trial. J Neurol Neurosurg Psychiatry. 2012;83(11):1125–1132. doi:10.1136/jnnp-2012-302468
  • Rudroff T Medical Marijuana and its Effects on Motor Function in People with Multiple Sclerosis: an Observational Case-Control Study (Clinical Trial Registration No. NCT02898974); 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02898974. Accessed May 10, 2024.
  • Walczyńska-Dragon K, Kurek-Górecka A, Niemczyk W, et al. Cannabidiol Intervention for Muscular Tension, Pain, and Sleep Bruxism Intensity—A Randomized, Double-Blind Clinical Trial. JCM. 2024;13(5):1417. doi:10.3390/jcm13051417
  • Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opinion Neurol. 2019;32(5):771–776. doi:10.1097/WCO.0000000000000730
  • Zarei S, Carr K, Reiley L, et al. A comprehensive review of amyotrophic lateral sclerosis. Surg Neurol Int. 2015;6(1):171. doi:10.4103/2152-7806.169561
  • Liu J, Wang F. Role of Neuroinflammation in Amyotrophic Lateral Sclerosis: cellular Mechanisms and Therapeutic Implications. Front Immunol. 2017;8:1005. doi:10.3389/fimmu.2017.01005
  • Batra G, Jain M, Singh R, et al. Novel therapeutic targets for amyotrophic lateral sclerosis. Indian J Pharmacol. 2019;51(6):418. doi:10.4103/ijp.IJP_823_19
  • Riva N, Mora G, Sorarù G, et al. Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, Phase 2 trial. Lancet Neurol. 2019;18(2):155–164. doi:10.1016/S1474-4422(18)30406-X
  • Weber M, Goldman B, Truniger S. Tetrahydrocannabinol (THC) for cramps in amyotrophic lateral sclerosis: a randomised, double-blind crossover trial. J Neurol Neurosurg. 2010;81(10):1135–1140. doi:10.1136/jnnp.2009.200642
  • Petrie GN, Nastase AS, Aukema RJ, Hill MN. Endocannabinoids, cannabinoids and the regulation of anxiety. Neuropharmacology. 2021;195:108626. doi:10.1016/j.neuropharm.2021.108626
  • Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet. 2007;370(9600):1706–1713. doi:10.1016/S0140-6736(07)61721-8
  • Moreira FA, Wotjak CT. Cannabinoids and Anxiety. In: Stein MB, Steckler T, editors. Behavioral Neurobiology of Anxiety and Its Treatment. Vol 2. Current Topics in Behavioral Neurosciences. Berlin Heidelberg: Springer; 2009:429–450. doi:10.1007/7854_2009_16
  • Rock EM, Limebeer CL, Petrie GN, Williams LA, Mechoulam R, Parker LA. Effect of prior foot shock stress and Δ9-tetrahydrocannabinol, cannabidiolic acid, and cannabidiol on anxiety-like responding in the light-dark emergence test in rats. Psychopharmacology. 2017;234(14):2207–2217. doi:10.1007/s00213-017-4626-5
  • Todd SM, Arnold JC. Neural correlates of interactions between cannabidiol and Δ 9 -tetrahydrocannabinol in mice: implications for medical cannabis: THC and CBD interactions. Br. J. Pharmacol. 2016;173(1):53–65. doi:10.1111/bph.13333
  • Rubino T, Sala M, Viganò D, et al. Cellular Mechanisms Underlying the Anxiolytic Effect of Low Doses of Peripheral Δ9-Tetrahydrocannabinol in Rats. Neuropsychopharmacol. 2007;32(9):2036–2045. doi:10.1038/sj.npp.1301330
  • Braida D, Limonta V, Malabarba L, Zani A, Sala M. 5-HT1A receptors are involved in the anxiolytic effect of Δ9-tetrahydrocannabinol and AM 404, the anandamide transport inhibitor, in Sprague-Dawley rats. Eur. J. Pharmacol. 2007;555(2–3):156–163. doi:10.1016/j.ejphar.2006.10.038
  • Beletsky A, Liu C, Lochte B, Samuel N, Grant I. Cannabis and Anxiety: a Critical Review. Med Cannabis Cannabinoids. 2024;7(1):19–30. doi:10.1159/000534855
  • Schmidt ME, Liebowitz MR, Stein MB, et al. The effects of inhibition of fatty acid amide hydrolase (FAAH) by JNJ-42165279 in social anxiety disorder: a double-blind, randomized, placebo-controlled proof-of-concept study. Neuropsychopharmacol. 2021;46(5):1004–1010. doi:10.1038/s41386-020-00888-1
  • Keith JM, Jones WM, Tichenor M, et al. Preclinical Characterization of the FAAH Inhibitor JNJ-42165279. ACS Med Chem Lett. 2015;6(12):1204–1208. doi:10.1021/acsmedchemlett.5b00353
  • Ahmed M, Tyndale RF, Rubin-Kahana DS, et al. Investigating Fatty Acid Amide Hydrolase Levels in Social Anxiety Disorder: a Positron Emission Tomography (PET) Study Using [C-11]CURB. Biol. Psychiatry. 2020;87(9):S299. doi:10.1016/j.biopsych.2020.02.770
  • Buxton OM, Broussard JL, Zahl AK, Hall M. Effects of Sleep Deficiency on Hormones, Cytokines, and Metabolism. In: Redline S, Berger NA editors. Impact of Sleep and Sleep Disturbances on Obesity and Cancer. Springer New York; 2014:25–50. doi:10.1007/978-1-4614-9527-7_2
  • Murawski B, Wade L, Plotnikoff RC, Lubans DR, Duncan MJ. A systematic review and meta-analysis of cognitive and behavioral interventions to improve sleep health in adults without sleep disorders. Sleep Med Rev. 2018;40:160–169. doi:10.1016/j.smrv.2017.12.003
  • Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of Healthy Sleep Duration among Adults — United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(6):137–141. doi:10.15585/mmwr.mm6506a1
  • Murillo-Rodríguez E. The role of the CB1 receptor in the regulation of sleep. Prog Neuro Psychopharmacol Biol Psychiatry. 2008;32(6):1420–1427. doi:10.1016/j.pnpbp.2008.04.008
  • Maejima T, Masseck OA, Mark MD, Herlitze S. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front Integr Neurosci. 2013;7. doi:10.3389/fnint.2013.00040
  • Kaul M, Zee PC, Sahni AS. Effects of Cannabinoids on Sleep and their Therapeutic Potential for Sleep Disorders. Neurotherapeutics. 2021;18(1):217–227. doi:10.1007/s13311-021-01013-w
  • Marzo VD, Bifulco M, Petrocellis LD. The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov. 2004;3(9):771–784. doi:10.1038/nrd1495
  • Hanlon EC, Tasali E, Leproult R, et al. Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol. Sleep. 2016;39(3):653–664. doi:10.5665/sleep.5546
  • Suraev AS, Marshall NS, Vandrey R, et al. Cannabinoid therapies in the management of sleep disorders: a systematic review of preclinical and clinical studies. Sleep Med Rev. 2020;53:101339. doi:10.1016/j.smrv.2020.101339
  • D’Souza DC, Cortes-Briones J, Creatura G, et al. Efficacy and safety of a fatty acid amide hydrolase inhibitor (PF-04457845) in the treatment of cannabis withdrawal and dependence in men: a double-blind, placebo-controlled, parallel group, phase 2a single-site randomised controlled trial. Lancet Psychiatry. 2019;6(1):35–45. doi:10.1016/S2215-0366(18)30427-9
  • Chagas MHN, Crippa JAS, Zuardi AW, et al. Effects of acute systemic administration of cannabidiol on sleep-wake cycle in rats. J Psychopharmacol. 2013;27(3):312–316. doi:10.1177/0269881112474524
  • Monti JM. Hypnoticlike effects of cannabidiol in the rat. Psychopharmacology. 1977;55(3):263–265. doi:10.1007/BF00497858
  • Saleska JL, Bryant C, Kolobaric A, et al. The Safety and Comparative Effectiveness of Non-Psychoactive Cannabinoid Formulations for the Improvement of Sleep: a Double-Blinded, Randomized Controlled Trial. J Am Nutrition Assoc. 2024;43(1):1–11. doi:10.1080/27697061.2023.2203221
  • Bidwell L, Sznitman S, Martin-Willett R, Hitchcock L. Daily associations with cannabis use and sleep quality in anxious cannabis users. Behav. Sleep Med. 2024;22(2):150–167. doi:10.1080/15402002.2023.2217969
  • Fujimori M, Himwich HE. Δ9-Tetrahydrocannabinol and the sleep-wakefulness cycle in rabbits. Physiol Behav. 1973;11(3):291–295. doi:10.1016/0031-9384(73)90003-6
  • Wallach MB, Gershon S. The effects of Δ8-THC on the EEG, reticular multiple unit activity and sleep of cats. Eur. J. Pharmacol. 1973;24(2):172–178. doi:10.1016/0014-2999(73)90068-X
  • Barratt ES, Adams PM. Chronic marijuana usage and sleep-wakefulness cycles in cats. Biol Psychiatry. 1973;6(3):207–214.
  • Pacek LR, Herrmann ES, Smith MT, Vandrey R. Sleep continuity, architecture and quality among treatment-seeking cannabis users: an in-home, unattended polysomnographic study. Exp. Clin. Psychopharmacol. 2017;25(4):295–302. doi:10.1037/pha0000126
  • Nicholson AN, Turner C, Stone BM, Robson PJ. Effect of Δ-9-Tetrahydrocannabinol and Cannabidiol on Nocturnal Sleep and Early-Morning Behavior in Young Adults. J Clin Psychopharmacol. 2004;24(3):305–313. doi:10.1097/01.jcp.0000125688.05091.8f
  • Lavender I, McGregor IS, Suraev A, Grunstein RR. Cannabinoids, Insomnia, and Other Sleep Disorders. Chest. 2022;162(2):452–465. doi:10.1016/j.chest.2022.04.151
  • Cherkasova V, Wang B, Gerasymchuk M, Fiselier A, Kovalchuk O, Kovalchuk I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers. 2022;14(20):5142. doi:10.3390/cancers14205142
  • Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA a Cancer J Clinicians. 2024;74(1):12–49. doi:10.3322/caac.21820
  • Rahman T. Erratum to Cancer statistics, 2024. CA a Cancer J Clinicians. 2024;74(2):203. doi:10.3322/caac.21830
  • Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Medicine. 2021:9. doi:10.1177/20503121211034366
  • Chakraborty S, Rahman T. The difficulties in cancer treatment. Ecancermedicalscience. 2012;6(16). doi:10.3332/ecancer.2012.ed16
  • Majeed H, Gupta V. Adverse Effects of Radiation Therapy StatPearls. StatPearls Publishing LLC.; 2023.
  • Strzelecka K, Piotrowska U, Sobczak M, Oledzka E. The Advancement of Biodegradable Polyesters as Delivery Systems for Camptothecin and Its Analogues—A Status Report. IJMS. 2023;24(2):1053. doi:10.3390/ijms24021053
  • Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci USA. 2003;100(3):776–781. doi:10.1073/pnas.0334858100
  • Pyszniak M, Tabarkiewicz J, Łuszczki J. Endocannabinoid system as a regulator of tumor cell malignancy - biological pathways and clinical significance. OTT. 2016;9:4323–4336. doi:10.2147/OTT.S106944
  • Ramer R, Bublitz K, Freimuth N, et al. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule‐1. FASEB j. 2012;26(4):1535–1548. doi:10.1096/fj.11-198184
  • Salazar M, Carracedo A, Salanueva ÍJ, et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest. 2009;119(5):1359–1372. doi:10.1172/JCI37948
  • Donadelli M, Dando I, Zaniboni T, et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis. 2011;2(4):e152–e152. doi:10.1038/cddis.2011.36
  • Tubaro A, Giangaspero A, Sosa S, et al. Comparative topical anti-inflammatory activity of cannabinoids and cannabivarins. Fitoterapia. 2010;81(7):816–819. doi:10.1016/j.fitote.2010.04.009
  • Anil SM, Peeri H, Koltai H. Medical Cannabis Activity Against Inflammation: active Compounds and Modes of Action. Front Pharmacol. 2022;13:908198. doi:10.3389/fphar.2022.908198
  • Winkler K, Ramer R, Dithmer S, Ivanov I, Merkord J, Hinz B. Fatty acid amide hydrolase inhibitors confer anti-invasive and antimetastatic effects on lung cancer cells. Oncotarget. 2016;7(12):15047–15064. doi:10.18632/oncotarget.7592
  • Buchalska B, Kamińska K, Owe-Larsson M, Cudnoch-Jędrzejewska A. Cannabinoids in the treatment of glioblastoma. Pharmacol Rep. 2024;8:850. doi:10.1007/s43440-024-00580-x
  • Dasram MH, Naidoo P, Walker RB, Khamanga SM. Targeting the Endocannabinoid System Present in the Glioblastoma Tumour Microenvironment as a Potential Anti-Cancer Strategy. IJMS. 2024;25(3):1371. doi:10.3390/ijms25031371
  • Cretu B, Zamfir A, Bucurica S, et al. Role of Cannabinoids in Oral Cancer. IJMS. 2024;25(2):969. doi:10.3390/ijms25020969
  • Heider CG, Itenberg SA, Rao J, Ma H, Wu X. Mechanisms of Cannabidiol (CBD) in Cancer Treatment: a Review. Biology. 2022;11(6):817. doi:10.3390/biology11060817
  • Abrams DI. The therapeutic effects of Cannabis and cannabinoids: an update from the National Academies of Sciences, Engineering and Medicine report. Eur J Internal Med. 2018;49:7–11. doi:10.1016/j.ejim.2018.01.003
  • Committee on the Health Effects of Marijuana: An Evidence Review and Research Agenda, Board on Population Health and Public Health Practice, Health and Medicine Division, National Academies of Sciences, Engineering, and Medicine. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. National Academies Press; 2017:24625. doi:10.17226/24625
  • Jatoi A, Windschitl HE, Loprinzi CL, et al. Dronabinol Versus Megestrol Acetate Versus Combination Therapy for Cancer-Associated Anorexia: a North Central Cancer Treatment Group Study. JCO. 2002;20(2):567–573. doi:10.1200/JCO.2002.20.2.567
  • Seymour-Jackson E, Laird BJA, Sayers J, Fallon M, Solheim TS, Skipworth R. Cannabinoids in the treatment of cancer anorexia and cachexia: where have we been, where are we going? Asia PacJ Oncol Nurs. 2023;10:100292. doi:10.1016/j.apjon.2023.100292
  • Vučković S, Srebro D, Vujović KS, Vučetić Č, Prostran M. Cannabinoids and Pain: new Insights From Old Molecules. Front Pharmacol. 2018;9:1259. doi:10.3389/fphar.2018.01259
  • Colombo E, Coppini DA, Polito L, et al. Cannabidiol as Self-Assembly Inducer for Anticancer Drug-Based Nanoparticles. Molecules. 2022;28(1):112. doi:10.3390/molecules28010112
  • Baswan SM, Klosner AE, Glynn K, et al. Therapeutic Potential of Cannabidiol (CBD) for Skin Health and Disorders. CCID. 2020;13:927–942. doi:10.2147/CCID.S286411
  • Sheriff T, Lin MJ, Dubin D, Khorasani H. The potential role of cannabinoids in dermatology. J Dermatological Treat. 2020;31(8):839–845. doi:10.1080/09546634.2019.1675854
  • Ständer S, Schmelz M, Metze D, Luger T, Rukwied R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatological Sci. 2005;38(3):177–188. doi:10.1016/j.jdermsci.2005.01.007
  • Río CD, Millán E, García V, Appendino G, DeMesa J, Muñoz E. The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders. Biochem. Pharmacol. 2018;157:122–133. doi:10.1016/j.bcp.2018.08.022
  • Denda M, Tsutsumi M, Goto M, Ikeyama K, Denda S. Topical Application of TRPA1 Agonists and Brief Cold Exposure Accelerate Skin Permeability Barrier Recovery. J Invest Dermatol. 2010;130(7):1942–1945. doi:10.1038/jid.2010.32
  • Denda M, Tsutsumi M, Denda S. Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis: TRPM8 agonists accelerate barrier recovery. Experimental Dermatol. 2010;19(9):791–795. doi:10.1111/j.1600-0625.2010.01154.x
  • Soliman E, Henderson KL, Danell AS, Van Dross R. Arachidonoyl‐ethanolamide activates endoplasmic reticulum stress‐apoptosis in tumorigenic keratinocytes: role of cyclooxygenase‐2 and novel J‐series prostamides. Mol, Carcinog. 2016;55(2):117–130. doi:10.1002/mc.22257
  • Soliman E, Van Dross R. Anandamide-induced endoplasmic reticulum stress and apoptosis are mediated by oxidative stress in non-melanoma skin cancer: receptor-independent endocannabinoid signaling. Mol, Carcinog. 2016;55(11):1807–1821. doi:10.1002/mc.22429
  • Ständer S, Reinhardt HW, Luger TA. Topische Cannabinoidagonisten: eine effektive, neue Möglichkeit zur Behandlung von chronischem Pruritus. Hautarzt. 2006;57(9):801–807. doi:10.1007/s00105-006-1180-1
  • Wilkinson JD, Williamson EM. Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis. J Dermatological Sci. 2007;45(2):87–92. doi:10.1016/j.jdermsci.2006.10.009
  • Carbone A, Siu A, Patel R. Pediatric Atopic Dermatitis: a Review of the Medical Management. Ann Pharmacother. 2010;44(9):1448–1458. doi:10.1345/aph.1P098
  • Soliman E, Ladin D, Van Dross R. Cannabinoids as Therapeutics for Non-Melanoma and Melanoma Skin Cancer. J Dermatol Clin Res. 2016;4(2):1069.
  • Kupczyk P, Reich A, Szepietowski JC. Cannabinoid system in the skin - a possible target for future therapies in dermatology. Experimental Dermatol. 2009;18(8):669–679. doi:10.1111/j.1600-0625.2009.00923.x
  • Ferreira I, Lopes CM, Amaral MH. Treatment Advances for Acne Vulgaris: the Scientific Role of Cannabinoids. Cosmetics. 2024;11(1):22. doi:10.3390/cosmetics11010022
  • Lapteva M, Faro Barros J, Kalia YN. Cutaneous Delivery and Biodistribution of Cannabidiol in Human Skin after Topical Application of Colloidal Formulations. Pharmaceutics. 2024;16(2):202. doi:10.3390/pharmaceutics16020202
  • Parikh AC, Jeffery CS, Sandhu Z, Brownlee BP, Queimado L, Mims MM. The effect of cannabinoids on wound healing: a review. Health Sci Rep. 2024;7(2):e1908. doi:10.1002/hsr2.1908
  • Smith G, Satino J. Hair Regrowth with Cannabidiol (CBD)-rich Hemp Extract - A Case Series. Cannabis. 2021;4(1):53–59. doi:10.26828/cannabis/2021.01.003
  • Maayah ZH, Takahara S, Ferdaoussi M, Dyck JRB. The molecular mechanisms that underpin the biological benefits of full-spectrum cannabis extract in the treatment of neuropathic pain and inflammation. Mol Basis Dis. 2020;1866(7):165771. doi:10.1016/j.bbadis.2020.165771
  • Balić A, Vlašić D, Žužul K, Marinović B, Bukvić Mokos Z. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. IJMS. 2020;21(3):741. doi:10.3390/ijms21030741
  • Moore EM, Wagner C, Komarnytsky S. The Enigma of Bioactivity and Toxicity of Botanical Oils for Skin Care. Front Pharmacol. 2020;11:785. doi:10.3389/fphar.2020.00785
  • Pei L, Luo Y, Gu X, Wang J. Formation, Stability and Properties of Hemp Seed Oil Emulsions for Application in the Cosmetics Industry. Tenside Surfactants Detergents. 2020;57(6):451–459. doi:10.3139/113.110712
  • Metwally S, Ura DP, Krysiak ZJ, Kaniuk L, Szewczyk PK, Stachewicz U. Electrospun PCL Patches with Controlled Fiber Morphology and Mechanical Performance for Skin Moisturization via Long-Term Release of Hemp Oil for Atopic Dermatitis. Membranes. 2020;11(1):26. doi:10.3390/membranes11010026
  • Mnekin L, Ripoll L. Topical Use of Cannabis sativa L. Biochemicals. Cosmetics. 2021;8(3):85. doi:10.3390/cosmetics8030085
  • Anand U, Pacchetti B, Anand P, Sodergren MH. Cannabis-based medicines and pain: a review of potential synergistic and entourage effects. Pain Management. 2021;11(4):395–403. doi:10.2217/pmt-2020-0110
  • Nevozhay D, Kańska U, Budzyńska R, Boratyński J. Current status of research on conjugates and related drug delivery systems in the treatment of cancer and other diseases. Postepy higieny medycyny doswiadczalnej. 2007;61:350–360.
  • Allen TM, Cullis PR. Drug Delivery Systems: entering the Mainstream. Science. 2004;303(5665):1818–1822. doi:10.1126/science.1095833
  • Zoltowska K, Sobczak M, Oledzka E. Polyurethanes in pharmacy — current state and perspectives of the development. Polimery. 2014;59(10):689–698. doi:10.14314/polimery.2014.689
  • Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci, C Polym Symp. 1975;51(1):135–153. doi:10.1002/polc.5070510111
  • Elvira C, Gallardo A, Roman J, Cifuentes A. Covalent Polymer-Drug Conjugates. Molecules. 2005;10(1):114–125. doi:10.3390/10010114
  • Larson N, Ghandehari H. Polymeric Conjugates for Drug Delivery. Chem Mater. 2012;24(5):840–853. doi:10.1021/cm2031569
  • Negut I, Bita B. Polymeric Micellar Systems—A Special Emphasis on “Smart” Drug Delivery. Pharmaceutics. 2023;15(3):976. doi:10.3390/pharmaceutics15030976
  • Perumal S, Atchudan R, Lee W. A Review of Polymeric Micelles and Their Applications. Polymers. 2022;14(12):2510. doi:10.3390/polym14122510
  • Kaur J, Gulati M, Jha NK, et al. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discovery Today. 2022;27(5):1495–1512. doi:10.1016/j.drudis.2022.02.005
  • Jung A. Nanoparticles in medical applications - a direction of the future? Pediatr Med Rodz. 2014;10(2):104–110. doi:10.15557/PiMR.2014.0015
  • Mohanraj VJ, Chen Y. Nanoparticles - A review. Trop J Pharm Res. 2007;5(1):561–573. doi:10.4314/tjpr.v5i1.14634
  • Budnicka M, Gadomska-Gajadhur A, Ruskowski P, Synoradzki L. Biodegradable polymers for the treatment of tuberculosis Part I. Epidemiology, therapy and treatment methods. Polimery. 2017;62(10):711–719. doi:10.14314/polimery.2017.711
  • Niemirowicz K, Car H. Nanonośniki jako nowoczesne transportery w kontrolowanym dostarczaniu leków. CHEMIK. 2012;66(8):868–881.
  • Tiwari G, Tiwari R, Bannerjee S, et al. Drug delivery systems: an updated review. Int J Pharma Investig. 2012;2(1):2. doi:10.4103/2230-973X.96920
  • Bajracharya R, Song JG, Patil BR, et al. Functional ligands for improving anticancer drug therapy: current status and applications to drug delivery systems. Drug Delivery. 2022;29(1):1959–1970. doi:10.1080/10717544.2022.2089296
  • Abuchowski A, van Es T, Palczuk NC, Davis FF. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem. 1977;252(11):3578–3581. doi:10.1016/S0021-9258(17)40291-2
  • Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252(11):3582–3586. doi:10.1016/S0021-9258(17)40292-4
  • Ikeda Y, Nagasaki Y. PEGylation Technology in Nanomedicine. In: Kunugi S, Yamaoka T, editors. Polymers in Nanomedicine. Vol 247. Advances in Polymer Science. Berlin Heidelberg: Springer; 2011:115–140. doi:10.1007/12_2011_154
  • Wang N, Wang T, Li T, Deng Y. Modulation of the physicochemical state of interior agents to prepare controlled release liposomes. Colloids Surf. B. 2009;69(2):232–238. doi:10.1016/j.colsurfb.2008.11.033
  • Niu M, Lu Y, Hovgaard L, et al. Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm. 2012;81(2):265–272. doi:10.1016/j.ejpb.2012.02.009
  • Liu P, Chen G, Zhang J. A Review of Liposomes as a Drug Delivery System: current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 2022;27(4):1372. doi:10.3390/molecules27041372
  • Bozzuto G, Molinari A. Liposomes as nanomedical devices. IJN. 2015;10(1):975–999. doi:10.2147/IJN.S68861
  • Sarecka-Hujar B, Jankowski A, Wysocka J. Liposomy-postać modyfikująca transport substancji aktywnych przez skórę Część 2. Zastosowanie w transporcie leków o działaniu ogólnoustrojowym. Ann Acad Med Silesiensis. 2011;65(4):45–50.
  • Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon. 2022;8(5):e09394. doi:10.1016/j.heliyon.2022.e09394
  • Goik U, Załęska-Żyłka I, Pietrzycka A. Liposomes as carriers for the delivery of active substances to the skin. Eng Biomaterials. 2015;18(130):27–39.
  • Pasarin D, Ghizdareanu AI, Enascuta CE, et al. Coating Materials to Increase the Stability of Liposomes. Polymers. 2023;15(3):782. doi:10.3390/polym15030782
  • Jerbic IS. Biodegradable synthetic polymers and their application in advanced drug delivery systems (DDS). J Chem Eng Process Technol. 2018;1(1):1–9. doi:10.4172/2157-7048-C1-011
  • Doppalapudi S, Jain A, Khan W, Domb AJ. Biodegradable polymers-an overview. Polym Adv Technol. 2014;25(5):427–435. doi:10.1002/pat.3305
  • Prasher P, Sharma M, Mehta M, et al. Current-status and applications of polysaccharides in drug delivery systems. Colloid Interface Sci. Commun. 2021;42:100418. doi:10.1016/j.colcom.2021.100418
  • Chanthathamrongsiri N, Petchsomrit A, Leelakanok N, Siranonthana N, Sirirak T. The comparison of the properties of nanocellulose isolated from colonial and solitary marine tunicates. Heliyon. 2021;7(8):e07819. doi:10.1016/j.heliyon.2021.e07819
  • Ioelovich M. Cellulose as a nanostructured polymer: a short review. BioRes. 2008;3(4):1403–1418. doi:10.15376/biores.3.4.Ioelovich
  • Klemm D, Cranston ED, Fischer D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today. 2018;21(7):720–748. doi:10.1016/j.mattod.2018.02.001
  • Seddiqi H, Oliaei E, Honarkar H, et al. Cellulose and its derivatives: towards biomedical applications. Cellulose. 2021;28(4):1893–1931. doi:10.1007/s10570-020-03674-w
  • Ahmad Raus R, Wan Nawawi WMF, Nasaruddin RR. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci. 2021;16(3):280–306. doi:10.1016/j.ajps.2020.10.001
  • Szekalska M, Puciłowska A, Szymańska E, Ciosek P, Winnicka K. Alginate: current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int J Polym Sci. 2016;2016:1–17. doi:10.1155/2016/7697031
  • Fu S, Thacker A, Sperger DM, et al. Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties. AAPS Pharm Sci Tech. 2011;12(2):453–460. doi:10.1208/s12249-011-9587-0
  • Otterlei M, Østgaard K, Skjåk-Bræk G, Smidsrød O, Soon-Shiong P, Espevik T. Induction of Cytokine Production from Human Monocytes Stimulated with Alginate. J Immunother. 1991;10(4):286–291. doi:10.1097/00002371-199108000-00007
  • Thomas S. Alginate dressings in surgery and wound management: part 2. J Wound Care. 2000;9(3):115–119. doi:10.12968/jowc.2000.9.3.25959
  • Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: a review. Int J Biol Macromol. 2015;72:269–281. doi:10.1016/j.ijbiomac.2014.07.008
  • Sun J, Tan H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials. 2013;6(4):1285–1309. doi:10.3390/ma6041285
  • Li J, Cai C, Li J, et al. Chitosan-Based Nanomaterials for Drug Delivery. Molecules. 2018;23(10):2661. doi:10.3390/molecules23102661
  • Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Delivery Rev. 2010;62(1):3–11. doi:10.1016/j.addr.2009.09.004
  • Frank LA, Onzi GR, Morawski AS, Pohlmann AR, Guterres SS, Contri RV. Chitosan as a coating material for nanoparticles intended for biomedical applications. React Funct Polym. 2020;147:104459. doi:10.1016/j.reactfunctpolym.2019.104459
  • Ali A, Ahmed S. A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol. 2018;109:273–286. doi:10.1016/j.ijbiomac.2017.12.078
  • Ways M, Lau T, Khutoryanskiy W. Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers. 2018;10(3):267. doi:10.3390/polym10030267
  • Bhatia S. Natural Polymers vs Synthetic Polymer. In: Natural Polymer Drug Delivery Systems. Springer International Publishing; 2016:95–118. doi:10.1007/978-3-319-41129-3_3
  • Piskin E. Biodegradable polymers as biomaterials. J biomater sci Poly ed. 1995;6(9):775–795. doi:10.1163/156856295X00175
  • Chandra R. Biodegradable polymers. Prog Polym Sci. 1998;23(7):1273–1335. doi:10.1016/S0079-6700(97)00039-7
  • Duda A, Penczek S. Polylactide [poly(lactic acid)]: synthesis, properties and applications. p. 2003;48(1):16–27.
  • Luo F, Fortenberry A, Ren J, Qiang Z. Recent Progress in Enhancing Poly(Lactic Acid) Stereocomplex Formation for Material Property Improvement. Front Chem. 2020;8:688. doi:10.3389/fchem.2020.00688
  • Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-l-Lactic Acid (PLLA)-Based Biomaterials for Regenerative Medicine: a Review on Processing and Applications. Polymers. 2022;14(6):1153. doi:10.3390/polym14061153
  • Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol. 2019;7:259. doi:10.3389/fbioe.2019.00259
  • Andrzejewska A, Topoliński T. Biodegradable polymers for biomedical applications. Dev Mech Engi. 2015;6(3):5–12.
  • Ragaert K, De Somer F, Van de Velde S, Degrieck J, Cardon L. Methods for Improved Flexural Mechanical Properties of 3D-Plotted PCL-Based Scaffolds for Heart Valve Tissue Engineering. SV-JME. 2013;59(11):669–676. doi:10.5545/sv-jme.2013.1003
  • Znajewska Z. Biodegradacja polikaprolaktonu przez grzyby Trichoderma viride. Chem Rev. 2018;1(10):78–81. doi:10.15199/62.2018.10.8
  • Woodruff MA, Hutmacher DW. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–1256. doi:10.1016/j.progpolymsci.2010.04.002
  • Budak K, Sogut O, Aydemir Sezer U. A review on synthesis and biomedical applications of polyglycolic acid. J Polym Res. 2020;27(8):208. doi:10.1007/s10965-020-02187-1
  • Kumar N, Ravikumar MNV, Domb AJ. Biodegradable block copolymers. Adv. Drug Delivery Rev. 2001;53(1):23–44. doi:10.1016/S0169-409X(01)00219-8
  • Surya N, Bhattacharyya S. PLGA-THE SMART POLYMER FOR DRUG DELIVERY. Farm Farmakol. 2021;9(5):334–345. doi:10.19163/2307-9266-2021-9-5-334-345
  • Machatschek R, Schulz B, Lendlein A. The influence of pH on the molecular degradation mechanism of PLGA. MRS Adv. 2018;3(63):3883–3889. doi:10.1557/adv.2018.602
  • Chandrasekaran AR, Venugopal J, Sundarrajan S, Ramakrishna S. Fabrication of a nanofibrous scaffold with improved bioactivity for culture of human dermal fibroblasts for skin regeneration. Biomed Mater. 2011;6(1):015001. doi:10.1088/1748-6041/6/1/015001
  • Li F, Li X, He R, Cheng J, Ni Z, Zhao G. Preparation and evaluation of poly(D, L-lactic acid)/poly(L-lactide-co-ε-caprolactone) blends for tunable sirolimus release. Colloids Surf. A. 2020;590:124518. doi:10.1016/j.colsurfa.2020.124518
  • Sang Q, Li H, Williams G, Wu H, Zhu LM. Core-shell poly(lactide-co-ε-caprolactone)-gelatin fiber scaffolds as pH-sensitive drug delivery systems. J Biomater Appl. 2018;32(8):1105–1118. doi:10.1177/0885328217749962
  • Abu Abed OS, Chaw C, Williams L, Elkordy AA. Lysozyme and DNase I loaded poly (D, L lactide-co-caprolactone) nanocapsules as an oral delivery system. Sci Rep. 2018;8(1):13158. doi:10.1038/s41598-018-31303-x
  • Lee SH, Kim BS, Kim SH, et al. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. J Biomed Mater Res. 2003;66A(1):29–37. doi:10.1002/jbm.a.10497
  • Chen S, Deng C, Zheng W, et al. Cannabidiol Effectively Promoted Cell Death in Bladder Cancer and the Improved Intravesical Adhesion Drugs Delivery Strategy Could Be Better Used for Treatment. Pharmaceutics. 2021;13(9):1415. doi:10.3390/pharmaceutics13091415
  • Chevalier MT, Al-Waeel M, Alsharabasy AM, Rebelo AL, Martin-Saldaña S, Pandit A. Therapeutic Polymer-Based Cannabidiol Formulation: tackling Neuroinflammation Associated with Ischemic Events in the Brain. Mol Pharm. 2024;acs.molpharmaceut.3c00244. doi:10.1021/acs.molpharmaceut.3c00244
  • Fraguas-Sánchez AI, Torres-Suárez AI, Cohen M, et al. PLGA Nanoparticles for the Intraperitoneal Administration of CBD in the Treatment of Ovarian Cancer: in Vitro and In Ovo Assessment. Pharmaceutics. 2020;12(5):439. doi:10.3390/pharmaceutics12050439
  • Muresan P, Woodhams S, Smith F, et al. Evaluation of cannabidiol nanoparticles and nanoemulsion biodistribution in the central nervous system after intrathecal administration for the treatment of pain. Nanomed Nanotechnol Biol Med. 2023;49:102664. doi:10.1016/j.nano.2023.102664
  • Shreiber-Livne I, Sulimani L, Shapira A, Procaccia S, Meiri D, Sosnik A. Poly(ethylene glycol)-b-poly(epsilon-caprolactone) nanoparticles as a platform for the improved oral delivery of cannabidiol. Drug Deliv Transl Res. 2023;13:3192–3203. doi:10.1007/s13346-023-01380-1
  • Monou PK, Mamaligka AM, Tzimtzimis EK, et al. Fabrication and Preliminary In Vitro Evaluation of 3D-Printed Alginate Films with Cannabidiol (CBD) and Cannabigerol (CBG) Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics. 2022;14(8):1637. doi:10.3390/pharmaceutics14081637
  • Hernán Pérez de la Ossa D, Ligresti A, Gil-Alegre ME, et al. Poly-ε-caprolactone microspheres as a drug delivery system for cannabinoid administration: development, characterization and in vitro evaluation of their antitumoral efficacy. J Control Release. 2012;161(3):927–932. doi:10.1016/j.jconrel.2012.05.003
  • Kamali A, Oryan A, Hosseini S, et al. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C. 2019;101:64–75. doi:10.1016/j.msec.2019.03.070
  • Kamali A, Oryan A, Hosseini S, et al. Corrigendum to Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. Mater Sci Eng C. 2021;126:112179. doi:10.1016/j.msec.2021.112179
  • Hernán Pérez De La Ossa D, Lorente M, Gil-Alegre ME, et al. Local Delivery of Cannabinoid-Loaded Microparticles Inhibits Tumor Growth in a Murine Xenograft Model of Glioblastoma Multiforme. PLoS One. 2013;8(1):e54795. doi:10.1371/journal.pone.0054795
  • Fraguas-Sánchez AI, Fernández-Carballido A, Simancas-Herbada R, Martin-Sabroso C, Torres-Suárez AI. CBD loaded microparticles as a potential formulation to improve paclitaxel and doxorubicin-based chemotherapy in breast cancer. Int J Pharm. 2020;574:118916. doi:10.1016/j.ijpharm.2019.118916
  • David C, De Souza JF, Silva AF, et al. Cannabidiol-loaded microparticles embedded in a porous hydrogel matrix for biomedical applications. J Mater Sci Mater Med. 2024;35(1):14. doi:10.1007/s10856-023-06773-9
  • Toncheva-Moncheva N, Dimitrov E, Grancharov G, Momekova D, Petrov P, Rangelov S. Cinnamyl-Modified Polyglycidol/Poly(ε-Caprolactone) Block Copolymer Nanocarriers for Enhanced Encapsulation and Prolonged Release of Cannabidiol. Pharmaceutics. 2023;15(8):2128. doi:10.3390/pharmaceutics15082128
  • Demisli S, Galani E, Goulielmaki M, et al. Encapsulation of cannabidiol in oil-in-water nanoemulsions and nanoemulsion-filled hydrogels: a structure and biological assessment study. J Colloid Interface Sci. 2023;634:300–313. doi:10.1016/j.jcis.2022.12.036
  • Durán-Lobato M, Muñoz-Rubio I, Holgado MÁ, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Enhanced Cellular Uptake and Biodistribution of a Synthetic Cannabinoid Loaded in Surface-Modified Poly(lactic-co-glycolic acid) Nanoparticles. J Biomed Nanotechnol. 2014;10(6):1068–1079. doi:10.1166/jbn.2014.1806
  • Durán-Lobato M, Martín-Banderas L, Gonçalves LMD, Fernández-Arévalo M, Almeida AJ. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J Nanopart Res. 2015;17(2):61. doi:10.1007/s11051-015-2875-y
  • Berrocoso E, Rey-Brea R, Fernández-Arévalo M, Micó JA, Martín-Banderas L. Single oral dose of cannabinoid derivate loaded PLGA nanocarriers relieves neuropathic pain for eleven days. Nanomed Nanotechnol Biol Med. 2017;13(8):2623–2632. doi:10.1016/j.nano.2017.07.010
  • Martín-Banderas L, Muñoz-Rubio I, Prados J, et al. In vitro and in vivo evaluation of Δ9-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. Int J Pharm. 2015;487(1–2):205–212. doi:10.1016/j.ijpharm.2015.04.054
  • Al-Ghananeem AM, Malkawi AH, Crooks PA. Bioavailability of Δ 9 -tetrahydrocannabinol following intranasal administration of a mucoadhesive gel spray delivery system in conscious rabbits. Drug Dev. Ind. Pharm. 2011;37(3):329–334. doi:10.3109/03639045.2010.513009
  • Román-Vargas Y, Porras-Arguello JD, Blandón-Naranjo L, Pérez-Pérez LD, Benjumea DM. Evaluation of the Analgesic Effect of High-Cannabidiol-Content Cannabis Extracts in Different Pain Models by Using Polymeric Micelles as Vehicles. Molecules. 2023;28(11):4299. doi:10.3390/molecules28114299
  • Porras JD, Román Y, Palacio J, Blandón-Naranjo L, Benjumea D, Pérez LD. Amphiphilic block copolymers bearing fatty acid derivatives as vehicles for THC in the development of analgesic oral formulations. React Funct Polym. 2024;195:105811. doi:10.1016/j.reactfunctpolym.2023.105811
  • Villate A, San Nicolas M, Olivares M, Aizpurua-Olaizola O, Usobiaga A. Chitosan-Coated Alginate Microcapsules of a Full-Spectrum Cannabis Extract: characterization, Long-Term Stability and In Vitro Bioaccessibility. Pharmaceutics. 2023;15(3):859. doi:10.3390/pharmaceutics15030859
  • Uziel A, Gelfand A, Amsalem K, et al. Full-Spectrum Cannabis Extract Microdepots Support Controlled Release of Multiple Phytocannabinoids for Extended Therapeutic Effect. ACS Appl Mater Interfaces. 2020;12(21):23707–23716. doi:10.1021/acsami.0c04435
  • Grotenhermen F, Müller-Vahl K. The Therapeutic Potential of Cannabis and Cannabinoids. Dtsch Arztebl Int. 2012;109(29–30):495–501. doi:10.3238/arztebl.2012.0495
  • Weber J, Schley M, Casutt M, et al. Tetrahydrocannabinol (Delta 9-THC) Treatment in Chronic Central Neuropathic Pain and Fibromyalgia Patients: results of a Multicenter Survey. Anesthesiology Res Practice. 2009;2009:1–9. doi:10.1155/2009/827290