90
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Construction and Application of a PD-L1-Targeted Multimodal Diagnostic and Dual-Functional Theranostics Nanoprobe

, , , , , , , , , & ORCID Icon show all
Pages 5479-5492 | Received 28 Jan 2024, Accepted 29 May 2024, Published online: 07 Jun 2024

References

  • Ribas A, Hamid O, Daud A, et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA. 2016;315(15):1600–1609. doi:10.1001/jama.2016.4059
  • Reck M, Rodríguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–small-cell lung cancer. N Engl J Med. 2016;375(19):1823–1833. doi:10.1056/NEJMoa1606774
  • Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373(19):1803–1813. doi:10.1056/NEJMoa1510665
  • Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka MJB. Bioelectronics Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosensors & Bioelectronics. 2023;240:115644. doi:10.1016/j.bios.2023.115644
  • Chen S, Crabill GA, Pritchard TS, et al. Mechanisms regulating PD-L1 expression on tumor and immune cells. J Immunother Cancer. 2019;7:1–12.
  • Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–567. doi:10.1038/nature14011
  • Hirsch FR, McElhinny A, Stanforth D, et al. PD-L1 immunohistochemistry assays for lung cancer: results from Phase 1 of the blueprint PD-L1 IHC assay comparison project. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer. 2017;12(2):208–222. doi:10.1016/j.jtho.2016.11.2228
  • Restifo NP, Smyth MJ, Snyder A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer. 2016;16(2):121–126. doi:10.1038/nrc.2016.2
  • Arasanz H, Bocanegra AI, Morilla I, et al. Circulating low density neutrophils are associated with resistance to first line anti-Pd1/Pdl1 immunotherapy in non-small cell lung cancer. Cancers. 2022;14(16):3846. doi:10.3390/cancers14163846
  • Lei Q, Wang D, Sun K, Wang L, Zhang Y. Resistance mechanisms of anti-PD1/PDL1 therapy in solid tumors. Front Cell Develop Biol. 2020;8:672. doi:10.3389/fcell.2020.00672
  • Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375(9):819–829. doi:10.1056/NEJMoa1604958
  • Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571. doi:10.1038/nature13954
  • Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–287. doi:10.1038/nrc.2016.36
  • Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–413. doi:10.1126/science.aan6733
  • Patel SJ, Sanjana NE, Kishton RJ, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548(7669):537–542. doi:10.1038/nature23477
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019;381(16):1535–1546. doi:10.1056/NEJMoa1910836
  • Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378(2):158–168. doi:10.1056/NEJMra1703481
  • Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11–20. doi:10.1056/NEJMoa055531
  • Chargari C, Levy A, Paoletti X, et al. Methodological development of combination drug and radiotherapy in basic and clinical research. Clin Cancer Res. 2020;26(18):4723–4736. doi:10.1158/1078-0432.CCR-19-4155
  • Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnol. 2012;30(7):679–692. doi:10.1038/nbt.2284
  • Zhou X, Jiang J, Yang X, et al. First-in-Humans evaluation of a PD-L1–binding peptide PET radiotracer in non–small cell lung cancer patients. J Nucl Med. 2022;63(4):536–542. doi:10.2967/jnumed.121.262045
  • Xia L, He C, Guo Y, et al. Preparation and Application of a Bioorganic Nanoparticle-Enhanced PDL1-Targeted Small-Molecule Probe. ACS Appl Mater Interfaces. 2023;15(25):30619–30629.
  • Kastelik-Hryniewiecka A, Jewula P, Bakalorz K, Kramer-Marek G, Kuźnik N. Targeted PET/MRI imaging super probes: a critical review of opportunities and challenges. Int j Nanomed. 2022;Volume 16:8465–8483. doi:10.2147/IJN.S336299
  • Smeraldo A, Ponsiglione AM, Soricelli A, Netti PA, Torino E. Update on the Use of PET/MRI Contrast Agents and Tracers in Brain Oncology: a Systematic Review. Int j Nanomed. 2022;17:3343. doi:10.2147/IJN.S362192
  • Harat M, Rakowska J, Harat M, et al. Combining amino acid PET and MRI imaging increases accuracy to define malignant areas in adult glioma. Nat Commun. 2023;14(1):4572. doi:10.1038/s41467-023-39731-8
  • Xia L, Meng X, Wen L, et al. A highly specific multiple enhancement theranostic nanoprobe for PET/MRI/PAI image‐guided radioisotope combined photothermal therapy in prostate cancer. Small. 2021;17(21):2100378. doi:10.1002/smll.202100378
  • Tu Y, Ma X, Chen H, et al. Molecular imaging of matrix metalloproteinase-2 in atherosclerosis using a smart multifunctional PET/MRI nanoparticle. Int j Nanomed. 2022;17:6773. doi:10.2147/IJN.S385679
  • Xia L, Wen L, Meng X, et al. Application analysis of 124I-PPMN for enhanced retention in tumors of prostate cancer xenograft mice. Int j Nanomed. 2021;Volume 16:7685–7695. doi:10.2147/IJN.S330237