52
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

A Novel Multi-Effect Photosensitizer for Tumor Destruction via Multimodal Imaging Guided Synergistic Cancer Phototherapy

, , , , , , , , , & ORCID Icon show all
Pages 6377-6397 | Received 29 Jan 2024, Accepted 12 Jun 2024, Published online: 23 Jun 2024

References

  • Zou Y, Long S, Xiong T, et al. Single-Molecule Förster Resonance Energy Transfer-Based Photosensitizer for Synergistic Photodynamic/Photothermal Therapy. ACS Cent Sci. 2021;7:327–334. doi:10.1021/acscentsci.0c01551
  • Wang J, Sun J, Wang Y, et al. Gold Nanoframeworks with Mesopores for Raman-Photoacoustic Imaging and Photo-Chemo Tumor Therapy in the Second Near-Infrared Biowindow. Adv Funct Mater. 2020;30:1908825. doi:10.1002/adfm.201908825
  • Zhou Y, Tong F, Gu W, et al. Co-delivery of photosensitizer and diclofenac through sequentially responsive bilirubin nanocarriers for combating hypoxic tumors. Acta Pharm Sin B. 2022;12:1416–1431. doi:10.1016/j.apsb.2021.12.001
  • Li S, Deng Q, Zhang Y, et al. Rational Design of Conjugated Small Molecules for Superior Photothermal Theranostics in the NIR-II Biowindow. Adv Mater. 2020;32:e2001146.
  • Wang S, Zhang L, Zhao J, et al. A tumor microenvironment-induced absorption red-shifted polymer nanoparticle for simultaneously activated photoacoustic imaging and photothermal therapy. Sci Adv. 2021;7:eabe3588.
  • Gong F, Cheng L, Yang N, et al. Preparation of TiH1.924 nanodots by liquid-phase exfoliation for enhanced sonodynamic cancer therapy. Nat Commun. 2020;11:3712. doi:10.1038/s41467-020-17485-x
  • Cai H, Dai X, Wang X, et al. A Nanostrategy for Efficient Imaging-Guided Antitumor Therapy through a Stimuli-Responsive Branched Polymeric Prodrug. Adv Sci. 2020;7:1903243. doi:10.1002/advs.201903243
  • Ding F, Chen Z, Kim WY, et al. A nano-cocktail of an NIR-II emissive fluorophore and organoplatinum(ii) metallacycle for efficient cancer imaging and therapy. Chem Sci. 2019;10:7023–7028. doi:10.1039/C9SC02466B
  • Nabeshima Y, Seo Y, Takeuchi M. A review of current trends in three-dimensional analysis of left ventricular myocardial strain. Cardiovasc Ultra. 2020;18:23. doi:10.1186/s12947-020-00204-3
  • Hill TK, Kelkar SS, Wojtynek NE, et al. Near Infrared Fluorescent Nanoparticles Derived from Hyaluronic Acid Improve Tumor Contrast for Image-Guided Surgery. Theranostics. 2016;6:2314–2328. doi:10.7150/thno.16514
  • Liang G, Wang H, Shi H, et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. J Nanobiotech. 2020;18:154. doi:10.1186/s12951-020-00713-3
  • Qin W, Quan G, Sun Y, et al. Dissolving Microneedles with Spatiotemporally controlled pulsatile release Nanosystem for Synergistic Chemo-photothermal Therapy of Melanoma. Theranostics. 2020;10:8179–8196. doi:10.7150/thno.44194
  • Hou J, Zhou J, Chang M, et al. LIFU-responsive nanomedicine enables acoustic droplet vaporization-induced apoptosis of macrophages for stabilizing vulnerable atherosclerotic plaques. Bioact Mater. 2022;16:120–133. doi:10.1016/j.bioactmat.2022.02.022
  • Fan Z, Liu H, Xue Y, et al. Reversing cold tumors to hot: an immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact Mater. 2020;6:312–325. doi:10.1016/j.bioactmat.2020.08.005
  • Lovell JF, Jin CS, Huynh E, et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater. 2011;10(4):324–332. doi:10.1038/nmat2986
  • Liu Y, Mo F, Hu J, et al. Precision photothermal therapy and photoacoustic imaging by in situ activatable thermoplasmonics. Chem Sci. 2021;12:10097–10105. doi:10.1039/D1SC02203B
  • Jiao L, Liu Y, Zhang X, et al. Constructing a Local Hydrophobic Cage in Dye-Doped Fluorescent Silica Nanoparticles to Enhance the Photophysical Properties. ACS Cent Sci. 2020;6:747–759. doi:10.1021/acscentsci.0c00071
  • Yang M, Cao S, Sun X, et al. Self-Assembled Naphthalimide Conjugated Porphyrin Nanomaterials with D-A Structure for PDT/PTT Synergistic Therapy. Bioconjug Chem. 2020;31:663–672. doi:10.1021/acs.bioconjchem.9b00819
  • Lv N, Li Q, Zhu H, et al. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: building Blocks, Coordination Microenvironments, Structure-Performance Relationships. Adv Sci. 2023;10:e2206239.
  • Xue S, Zhou X, Sang W, et al. Cartilage-targeting peptide-modified dual-drug delivery nanoplatform with NIR laser response for osteoarthritis therapy. Bioact Mater. 2021;6:2372–2389. doi:10.1016/j.bioactmat.2021.01.017
  • Zheng BD, He QX, Li X, et al. Phthalocyanines as contrast agents for photothermal therapy. Coord Chem Rev. 2021;426:213548. doi:10.1016/j.ccr.2020.213548
  • Lara P, Huis In ‘t Veld RV, Jorquera-Cordero C, et al. Zinc-Phthalocyanine-Loaded Extracellular Vesicles Increase Efficacy and Selectivity of Photodynamic Therapy in Co-Culture and Preclinical Models of Colon Cancer. Pharmaceutics. 2021;13:1547. doi:10.3390/pharmaceutics13101547
  • Tang Q, Hu P, Peng H, et al. Near-Infrared Laser-Triggered, Self-Immolative Smart Polymersomes for in vivo Cancer Therapy. Int J Nanomed. 2020;15:137–149. doi:10.2147/IJN.S224502
  • Chota A, George BP, Abrahamse H. In Vitro Cell Death Mechanisms Induced by Dicoma anomala Root Extract in Combination with ZnPcS4 Mediated-Photodynamic Therapy in A549 Lung Cancer Cells. Cells. 2022;11:3288. doi:10.3390/cells11203288
  • Lee HJ, Lee YG, Kang J, et al. Monitoring metal-amyloid-β complexation by a FRET-based probe: design, detection, and inhibitor screening. Chem Sci. 2018;10:1000–1007. doi:10.1039/C8SC04943B
  • Nowacka M, Makowski T, Kowalewska A. Hybrid Fluorescent Poly(silsesquioxanes) with Amide- and Triazole-Containing Side Groups for Light Harvesting and Cation Sensing. Materials. 2020;13:4491. doi:10.3390/ma13204491
  • Naik IK, Bodapati R, Sarkar R, et al. Functional Molecular System of Bis(pyrazolyl)pyridine Derivatives: photophysics, Spectroscopy, Computation, and Ion Sensing. ACS omega. 2018;3:3022–3035. doi:10.1021/acsomega.7b02006
  • Susu L, Campu A, Astilean S, et al. Calligraphed Selective Plasmonic Arrays on Paper Platforms for Complementary Dual Optical “ON/OFF Switch” Sensing. Nanomaterials. 2020;10:1025. doi:10.3390/nano10061025
  • Ozaki R, Yamada T, Yudate S, et al. Luminescent color control of Langmuir-Blodgett film by emission enhancement using a planar metal layer. Sci Rep. 2018;8:17119. doi:10.1038/s41598-018-35467-4
  • Zhang B, Chen L, Zhang Z, et al. Modulating the Band Structure of Metal Coordinated Salen COFs and an In Situ Constructed Charge Transfer Heterostructure for Electrocatalysis Hydrogen Evolution. Adv Sci. 2022;9:e2105912. doi:10.1002/advs.202105912
  • Dibetsoe M, Olasunkanmi LO, Fayemi OE, et al. Some Phthalocyanine and Naphthalocyanine Derivatives as Corrosion Inhibitors for Aluminium in Acidic Medium: experimental, Quantum Chemical Calculations, QSAR Studies and Synergistic Effect of Iodide Ions. Molecules. 2015;20:15701–15734. doi:10.3390/molecules200915701
  • Wang Y, Hou J, Eguchi K, et al. Structural, Electronic, and Magnetic Properties of Cobalt Tetrakis (Thiadiazole) Porphyrazine Molecule Films on Au(111). ACS omega. 2020;5:6676–6683. doi:10.1021/acsomega.9b04453
  • Balogun SA, Fayemi OE. Recent Advances in the Use of CoPc-MWCNTs Nanocomposites as Electrochemical Sensing Materials. Biosensors. 2022;12:850. doi:10.3390/bios12100850
  • Li X, Peng XH, Zheng BD, et al. New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates. Chem Sci. 2018;9:2098–2104. doi:10.1039/C7SC05115H
  • Peng XH, Chen SF, Zheng BY, et al. Comparison between amine-terminated phthalocyanines and their chlorambucil conjugates: synthesis, spectroscopic properties, and inâvitro anticancer activity. Tetrahedron. 2017;73:378–384. doi:10.1016/j.tet.2016.12.017
  • van de Winckel E, Schneider RJ, de la Escosura A, et al. Multifunctional Logic in a Photosensitizer with Triple-Mode Fluorescent and Photodynamic Activity. Chemistry. 2015;21:18551–18556. doi:10.1002/chem.201503830
  • Wang Y, Zhang X, Zhao Y, et al. Three Novel Zn-Based Coordination Polymers: synthesis, Structure, and Effective Detection of Al3+ and S2- Ions. Molecules. 2020;25:382. doi:10.3390/molecules25020382
  • Ryu U, Jee S, Rao PC, et al. Recent advances in process engineering and upcoming applications of metal-organic frameworks. Coord Chem Rev. 2021;426:213548.
  • Hu S, Pei X, Duan L, et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat Commun. 2021;12:1689. doi:10.1038/s41467-021-21989-5
  • Wang Y, Quinsaat JEQ, Ono T, et al. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol). Nat Commun. 2021;11:6089. doi:10.1038/s41467-020-19947-8
  • Wu F, Chen L, Yue L, et al. Small-Molecule Porphyrin-Based Organic Nanoparticles with Remarkable Photothermal Conversion Efficiency for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS Appl Mater Int. 2019;11:21408–21416. doi:10.1021/acsami.9b06866
  • Revuelta-Maza MÁ, Mascaraque M, González-Jiménez P, et al. Assessing Amphiphilic ABAB Zn(II) Phthalocyanines with Enhanced Photosensitization Abilities in In Vitro Photodynamic Therapy Studies Against Cancer. Molecules. 2020;25:213. doi:10.3390/molecules25010213
  • Ribeiro VGP, Mota JPF, Júnior AEC, et al. Nanomaterials Based on Fe3O4 and Phthalocyanines Derived from Cashew Nut Shell Liquid. Molecules. 2019;24:3284. doi:10.3390/molecules24183284
  • Liu D, Liu L, Liu F, et al. HOCl-Activated Aggregation of Gold Nanoparticles for Multimodality Therapy of Tumors. Adv Sci. 2021;8:e2100074.
  • Liu Y, Dai S, Wen L, et al. Enhancing Drug Delivery for Overcoming Angiogenesis and Improving the Phototherapy Efficacy of Glioblastoma by ICG-Loaded Glycolipid-Like Micelles. Int J Nanomed. 2020;15:2717–2732. doi:10.2147/IJN.S234240
  • Abid S, Hassine SB, Richy N, et al. Phthalocyanine-Cored Fluorophores with Fluorene-Containing Peripheral Two-Photon Antennae as Photosensitizers for Singlet Oxygen Generation. Molecules. 2020;25:239. doi:10.3390/molecules25020239
  • Shimomura S, Nishimura T, Ogura Y, et al. Optical decomposition of DNA gel and modification of object mobility on micrometre scale. Sci Rep. 2019;9:19858. doi:10.1038/s41598-019-56501-z
  • Sun B, Luo C, Zhang X, et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun. 2019;10:3211. doi:10.1038/s41467-019-11193-x
  • Liu C, Zhang S, Li J, et al. A Water-Soluble, NIR-Absorbing Quaterrylenediimide Chromophore for Photoacoustic Imaging and Efficient Photothermal Cancer Therapy. Angew Chem Int Ed Engl. 2019;58:1638–1642. doi:10.1002/anie.201810541
  • Zhang S, Guo W, Wei J, et al. Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. ACS nano. 2017;11:3797–3805. doi:10.1021/acsnano.6b08720
  • Du L, Qin H, Ma T, et al. In Vivo Imaging-Guided Photothermal/Photoacoustic Synergistic Therapy with Bioorthogonal Metabolic Glycoengineering-Activated Tumor Targeting Nanoparticles. ACS nano. 2017;11:8930–8943. doi:10.1021/acsnano.7b03226
  • Cao S, Shao J, Wu H, et al. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat Commun. 2021;12:2077. doi:10.1038/s41467-021-22279-w
  • Chen X, Fan X, Zhang Y, et al. Cooperative coordination-mediated multi-component self-assembly of “all-in-one” nanospike theranostic nano-platform for MRI-guided synergistic therapy against breast cancer. Acta Pharm Sin B. 2022;12:3710–3725. doi:10.1016/j.apsb.2022.02.027