31
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Ultrasensitive Hierarchical AuNRs@SiO2@Ag SERS Probes for Enrichment and Detection of Insulin and C-Peptide in Serum

, , , , ORCID Icon, , , ORCID Icon & show all
Pages 6281-6293 | Received 08 Mar 2024, Accepted 28 May 2024, Published online: 20 Jun 2024

References

  • Bertini A, Gárate B, Pardo F, et al. Impact of remote monitoring technologies for assisting patients with gestational diabetes mellitus: a systematic review. Front Bioeng Biotechnol. 2022;10:819697. doi:10.3389/fbioe.2022.819697
  • So M, Elso CM, Tresoldi E, et al. Proinsulin C-peptide is an autoantigen in people with type 1 diabetes. Proc Natl Acad Sci USA. 2018;115:10732–10737. doi:10.1073/pnas.1809208115
  • Maddaloni E, Bolli GB, Frier BM, et al. C-peptide determination in the diagnosis of type of diabetes and its management: a clinical perspective. Diabetes Obesity Metab. 2022;24:1912–1926. doi:10.1111/dom.14785
  • Norton L, Shannon C, Gastaldelli A, DeFronzo RA. Insulin: the master regulator of glucose metabolism. Metabolism. 2022;129:155142. doi:10.1016/j.metabol.2022.155142
  • Graham ML, Gresch SC, Hardy SK, Mutch LA, Janecek JL, Hegstad-Davies RL. Evaluation of commercial ELISA and RIA for measuring porcine C-peptide: implications for research. Xenotransplantation. 2015;22:62–69. doi:10.1111/xen.12143
  • Warnken T, Huber K, Feige K. Comparison of three different methods for the quantification of equine insulin. BMC Vet Res. 2016;12:196. doi:10.1186/s12917-016-0828-z
  • Bandres-Meriz J, Majali-Martinez A, Hoch D, et al. Maternal C-peptide and insulin sensitivity, but not bmi, associate with fatty acids in the first trimester of pregnancy. Int J Mol Sci. 2021;22:10422. doi:10.3390/ijms221910422
  • Farino ZJ, Morgenstern TJ, Vallaghe J, et al. Development of a rapid insulin assay by homogenous time-resolved fluorescence. PLoS One. 2016;11. doi:10.1371/journal.pone.0148684
  • Li HT, Liu XW, Li L, Mu XY, Genov R, Mason AJ. CMOS electrochemical instrumentation for biosensor microsystems: a review. Sensors. 2016;17:74. doi:10.3390/s17010074
  • Liu X, Fang C, Yan JL, Li HL, Tu YF. A sensitive electrochemiluminescent biosensor based on AuNP-functionalized ITO for a label-free immunoassay of C-peptide. Bioelectrochemistry. 2018;123:211–218. doi:10.1016/j.bioelechem.2018.05.010
  • Stoyanov AV, Connolly S, Rohlfing CL, Rogatsky E, Stein D, Little RR. Human C-peptide quantitation by LC-MS isotope-dilution assay in serum or urine samples. J Chromatogr Sep Tech. 2013;4:172. doi:10.4172/2157-7064.1000172
  • Kinumi T, Goto M, Eyama S, Kato M, Kasama T, Takatsu A. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses. Anal Bioanal Chem. 2012;404:13–21. doi:10.1007/s00216-012-6097-1
  • Chambers EE, Fountain KJ, Smith N, et al. Multidimensional LC-MS/MS enables simultaneous quantification of intact human insulin and five recombinant analogs in human plasma. Anal Chem. 2014;86:694–702. doi:10.1021/ac403055d
  • Nedelkov D, Niederkofler EE, Oran PE, Peterman S, Nelson RW. Top-down mass spectrometric immunoassay for human insulin and its therapeutic analogs. J Proteomics. 2018;175:27–33. doi:10.1016/j.jprot.2017.08.001
  • Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine. 2020;15:2971–2990. doi:10.2217/nnm-2020-0361
  • Le Ru EC, Meyer M, Etchegoin PG. Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B. 2006;110:1944–1948. doi:10.1021/jp054732v
  • Ding SY, Yi J, Li JF, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater. 2016;1:16021. doi:10.1038/natrevmats.2016.21
  • Liu YJ, Cao WT, Ma MG, Wan P. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic ”soft and hard” hybrid networks. ACS Appl Mater Interfaces. 2017;9:25559–25570. doi:10.1021/acsami.7b07639
  • Wang ZY, Zong SF, Wu L, Zhu D, Cui YP. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem Rev. 2017;117:7910–7963. doi:10.1021/acs.chemrev.7b00027
  • Meng XD, Dai WH, Zhang K, Dong HF, Zhang XJ. Imaging multiple microRNAs in living cells using ATP self-powered strand-displacement cascade amplification. Chem Sci. 2018;9:1184–1190. doi:10.1039/c7sc04725h
  • Wang YC, Jin YH, Xiao XY, et al. Flexible, transparent and highly sensitive SERS substrates with cross-nanoporous structures for fast on-site detection. Nanoscale. 2018;10:15195–15204. doi:10.1039/c8nr01628c
  • Xu KC, Zhou R, Takei K, Hong MH. Toward flexible surface-enhanced raman scattering (SERS) sensors for point-of-care diagnostics. Adv Sci. 2019;6. doi:10.1002/advs.201900925
  • Yang LL, Peng YS, Yang Y, et al. A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv Sci. 2019;6:1900310. doi:10.1002/advs.201900310
  • Zhou YS, Zhao G, Bian JM, et al. Multiplexed SERS barcodes for anti-counterfeiting. ACS Appl Mater Interfaces. 2020;12:28532–28538. doi:10.1021/acsami.0c06272
  • Tao W, Kong N, Ji XY, et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem Soc Rev. 2019;48:2891–2912. doi:10.1039/c8cs00823j
  • Ju J, Hsieh CM, Tian Y, et al. Surface enhanced raman spectroscopy based biosensor with a microneedle array for minimally invasive in vivo glucose measurements. ACS Sens. 2020;5:1777–1785. doi:10.1021/acssensors.0c00444
  • Wang XT, Guo L. SERS activity of semiconductors: crystalline and amorphous nanomaterials. Angew Chem Int Ed. 2020;59:4231–4239. doi:10.1002/anie.201913375
  • Du Z, Qi YC, He J, Zhong DN, Zhou M. Recent advances in applications of nanoparticles in SERS in vivo imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13:1672. doi:10.1002/wnan.1672
  • Dai X, Song ZL, Song WJ, et al. Shell-switchable SERS blocking strategy for reliable signal-on SERS sensing in living cells: detecting an external target without affecting the internal raman molecule. Anal Chem. 2020;92:11469–11475. doi:10.1021/acs.analchem.0c02747
  • Liu H, Wei L, Hua J, et al. Enzyme activity-modulated etching of gold nanobipyramids@MnO2 nanoparticles for ALP assay using surface-enhanced Raman spectroscopy. Nanoscale. 2020;12:10390–10398. doi:10.1039/d0nr01837f
  • Zhang C, Liu XZ, Xu ZW, Liu DB. Multichannel stimulus-responsive nanoprobes for H2O2 sensing in diverse biological milieus. Anal Chem. 2020;92:12639–12646. doi:10.1021/acs.analchem.0c02769
  • Liu CC, Yang PP, Li JG, Cao SK, Shi J. NIR/pH-responsive chitosan hydrogels containing Ti3C2/AuNRs with NIR-triggered photothermal effect. Carbohydr Polym. 2022;295:119853. doi:10.1016/j.carbpol.2022.119853
  • Wen C, Guo X, Gao C, et al. NIR-II-responsive AuNRs@SiO2-RB@MnO2 nanotheranostic for multimodal imaging-guided CDT/PTT synergistic cancer therapy. J Mat Chem B. 2022;10:4274–4284. doi:10.1039/d1tb02807c
  • Quinson J, Aalling-Frederiksen O, Dacayan WL, et al. Surfactant-free colloidal syntheses of gold-based nanomaterials in alkaline water and mono-alcohol mixtures. ChemMater. 2023;35:2173–2190. doi:10.1021/acs.chemmater.3c00090
  • Lee S, Namgoong JM, Jue M, et al. Selective detection of nano-sized diagnostic markers using Au-ZnO nanorod-based surface-enhanced raman spectroscopy (SERS) in ureteral obstruction models. Int J Nanomed. 2020;15:8121–8130. doi:10.2147/IJN.S272500
  • Barbillon G, Graniel O, Bechelany M. Assembled Au/ZnO Nano-Urchins for SERS Sensing of the Pesticide Thiram. Nanomaterials. 2021;11:2174. doi:10.3390/nano11092174
  • Guo YY, Li D, Zheng SQ, Xu NW, Deng W. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu (II. Biosens Bioelectron. 2020;159:112192. doi:10.1016/j.bios.2020.112192
  • Wang GF, Wang WL, Shangguan E, Gao SY, Liu YF. Effects of gold nanoparticle morphologies on interactions with proteins. Mater Sci Eng C. 2020;111:110830. doi:10.1016/j.msec.2020.110830
  • Prinz Setter O, Snoyman I, Shalash G, Segal E. Gold nanorod-incorporated halloysite nanotubes functionalized with antibody for superior antibacterial photothermal treatment. Pharmaceutics. 2022;14:2094. doi:10.3390/pharmaceutics14102094
  • Huang XB, Wu SH, Hu HC, Sun JJ. AuNanostar@4-MBA@Au Core-Shell nanostructure coupled with exonuclease III-assisted cycling amplification for ultrasensitive SERS detection of ochratoxin A. ACS Sens. 2020;5:2636–2643. doi:10.1021/acssensors.0c01162
  • Lin S, Hasi WL, Lin X, et al. Lab-on-capillary platform for on-site quantitative SERS analysis of surface contaminants based on Au@4-MBA@Ag core-shell nanorods. ACS Sens. 2020;5:1465–1473. doi:10.1021/acssensors.0c00398
  • Xue XX, Chen L, Wang CX, et al. Highly sensitive SERS behavior and wavelength-dependence charge transfer effect on the PS/Ag/ZIF-8 substrate. Spectrochim Acta A Mol Biomol Spectrosc. 2021;247:119126. doi:10.1016/j.saa.2020.119126
  • Pang YF, Wang CG, Lu LC, Wang CW, Sun ZW, Xiao R. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens Bioelectron. 2019;130:204–213. doi:10.1016/j.bios.2019.01.039
  • Jiang SQ, Li Q, Wang CW, Pang YF, Sun ZW, Xiao R. In situ exosomal MicroRNA determination by target-triggered SERS and Fe3O4@TiO2-based exosome accumulation. ACS Sens. 2021;6:852–862. doi:10.1021/acssensors.0c01900
  • Zhou ZH, Xiao R, Cheng SY, et al. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Anal Chim Acta. 2021;1160:338421. doi:10.1016/j.aca.2021.338421
  • Abazar F, Sharifi E, Noorbakhsh A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. ED Manag. 2022;180:107560. doi:10.1016/j.microc.2022.107560
  • Shepa J, Šišoláková I, Vojtko M, et al. NiO nanoparticles for electrochemical insulin detection. Sensors. 2021;21:5063. doi:10.3390/s21155063
  • Noorbakhsh A, Alnajar AIK. Antifouling properties of reduced graphene oxide nanosheets for highly sensitive determination of insulin. Microchem J. 2016;129:310–317. doi:10.1016/j.microc.2016.06.009
  • Wang J, Zhang XJ. Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal Chem. 2001;73:844–847. doi:10.1021/ac0009393
  • Liu TC, Chen MJ, Ren ZQ, Hou JY, Lin GF, Wu YS. Development of an improved time-resolved fluoroimmunoassay for simultaneous quantification of C-peptide and insulin in human serum. Clin Biochem. 2014;47:439–444. doi:10.1016/j.clinbiochem.2014.01.016
  • Salimi A, Noorbakhash A, Sharifi E, Semnani A. Highly sensitive sensor for picomolar detection of insulin at physiological pH, using GC electrode modified with guanine and electrodeposited nickel oxide nanoparticles. Biosens Bioelectron. 2008;24:792–798. doi:10.1016/j.bios.2008.06.046
  • Salimi A, Mohamadi L, Hallaj R, Soltanian S. Electrooxidation of insulin at silicon carbide nanoparticles modified glassy carbon electrode. Electrochem commun. 2009;11:1116–1119. doi:10.1016/j.elecom.2009.03.024
  • Salimi A, Roushani M, Soltanian S, Hallaj R. Picomolar detection of insulin at renewable nickel powder-doped carbon composite electrode. Anal Chem. 2007;79:7431–7438. doi:10.1021/ac0702948
  • Stoyanov AV, Rohlfing CL, Connolly S, Roberts ML, Nauser CL, Little RR. Use of cation exchange chromatography for human C-peptide isotope dilution - mass spectrometric assay. J Chromatogr A. 2011;1218:9244–9249. doi:10.1016/j.chroma.2011.10.080
  • Thomas A, Brinkkötter PT, Schänzer W, Thevis M. Simultaneous determination of insulin, DesB30 insulin, proinsulin, and C-peptide in human plasma samples by liquid chromatography coupled to high resolution mass spectrometry. Forensic Toxicol. 2017;106–113. doi:10.1007/s11419-016-0343-8