57
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Combined Hydroxyethyl Starch Luteolin Nanocrystals for Effective Anti-Hyperuricemia Effect in Mice Model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 5139-5156 | Received 20 Feb 2024, Accepted 21 May 2024, Published online: 04 Jun 2024

References

  • Al-Khayri JM, Sahana GR, Nagella P, Joseph BV, Alessa FM, Al-Mssallem MQ. Flavonoids as potential anti-inflammatory molecules: a review. Molecules. 2022;27(9):2901. doi:10.3390/molecules27092901
  • Teng H, Zheng Y, Cao H, Huang Q, Xiao J, Chen L. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review. Crit Rev Food Sci Nutr. 2023;63(3):378–393. doi:10.1080/10408398.2021.1947772
  • Vazhappilly CG, Amararathna M, Cyril AC, et al. Current methodologies to refine bioavailability, delivery, and therapeutic efficacy of plant flavonoids in cancer treatment. J Nutr Biochem. 2021;94:108623. doi:10.1016/j.jnutbio.2021.108623
  • Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022;383:132531. doi:10.1016/j.foodchem.2022.132531
  • Xiao J. Recent advances in dietary flavonoids for management of type 2 diabetes. Curr Opin Food Sci. 2022;4:1100806.
  • Adachi S, Oyama M, Kondo S, Yagasaki K. Comparative effects of quercetin, luteolin, apigenin and their related polyphenols on uric acid production in cultured hepatocytes and suppression of purine bodies-induced hyperuricemia by rutin in mice. Cytotechnology. 2021;73(3):343–351. doi:10.1007/s10616-021-00452-9
  • Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary flavonoids in p53—mediated immune dysfunctions linking to cancer prevention. Biomedicines. 2020;8(8):286. doi:10.3390/biomedicines8080286
  • Vazhappilly CG, Ansari SA, Al-Jaleeli R, et al. Role of flavonoids in thrombotic, cardiovascular, and inflammatory diseases. Inflammopharmacology. 2019;27(5):863–869. doi:10.1007/s10787-019-00612-6
  • Xu Q, Zhang W, Xu H, Zhang Q. Fabrication of luteolin loaded zein-caseinate nanoparticles and its bioavailability enhancement in rats. J Pharm Sci. 2023;112(13):3056–3066. doi:10.1016/j.xphs.2023.06.010
  • Zhao J, Yang J, Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm. 2019;570:118642. doi:10.1016/j.ijpharm.2019.118642
  • Xiang D, Wang C, Wang W, et al. Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: an in vitro investigation. Int J Food Sci Nutr. 2017;68(6):704–711. doi:10.1080/09637486.2016.1276518
  • Gujar K, Wairkar S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine. 2020;71:153240. doi:10.1016/j.phymed.2020.153240
  • Liu J, Sun Y, Cheng M, et al. Improving oral bioavailability of luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech. 2021;22(3):133. doi:10.1208/s12249-021-02012-y
  • Liu J, Tu L, Cheng M, Feng J, Jin Y. Mechanisms for oral absorption enhancement of drugs by nanocrystals. J Drug Deliv Sci Technol. 2020;56:101607. doi:10.1016/j.jddst.2020.101607
  • Wang Y, Tan X, Fan X, et al. Current strategies for oral delivery of BCS IV drug nanocrystals: challenges, solutions and future trends. Expert Opin Drug Deliv. 2021;18(9):1211–1228. doi:10.1080/17425247.2021.1903428
  • Ghadi R, Dand N. BCS class IV drugs: highly notorious candidates for formulation development. J Control Release. 2017;248:71–95. doi:10.1016/j.jconrel.2017.01.014
  • Pardhi E, Vasave R, Srivastava V, Yadav R, Mehra NK. Nanocrystal technologies in biomedical science: from the bench to the clinic. Drug Discov Today. 2022;29(3):103913. doi:10.1016/j.drudis.2024.103913
  • Long J, Song J, Zhang X, et al. Tea saponins as natural stabilizers for the production of hesperidin nanosuspensions. Int J of Pharm. 2020;583:119406. doi:10.1016/j.ijpharm.2020.119406
  • Tu L, Cheng M, Sun Y, et al. Fabrication of ultra-small nanocrystals by formation of hydrogen bonds: in vitro and in vivo evaluation. Int J Pharm. 2020;573:118730. doi:10.1016/j.ijpharm.2019.118730
  • Suo Z, Sun Q, Peng X, et al. Lentinan as a natural stabilizer with bioactivities for preparation of drug-drug nanosuspensions. Int J Biol Macromol. 2021;184:101–108. doi:10.1016/j.ijbiomac.2021.06.056
  • Luo Y, Liu Y, Chen Y, et al. Study on redispersibility of drug nanocrystals particles during storage: novel understanding based on water adsorption and glass transition of amorphous matrix formers. Int J Pharm. 2020;575:118945. doi:10.1016/j.ijpharm.2019.118945
  • Wang H, Hu H, Yang H, Li Z. Hydroxyethyl starch based smart nanomedicine. RSC Adv. 2021;11(6):3226–3240. doi:10.1039/D0RA09663F
  • Xiao C, Li J, Wang X, et al. Hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals for cancer therapy. J Control Release. 2023;356:288–305. doi:10.1016/j.jconrel.2023.02.043
  • Li J, Yang Y, Lu L, Ma Q, Zhang J. Preparation, characterization and systemic application of self-assembled Hydroxyethyl starch nanoparticles-loaded flavonoid Morin for hyperuricemia therapy. Int J Nanomedicine. 2018;13:2129–2141. doi:10.2147/IJN.S158585
  • Zarbock AMD, Buhre WMD. Hydroxyethyl starch in the perioperative period: friend, foe, or still an unsolved issue? Anesth Analg. 2022;134(4):683–685. doi:10.1213/ANE.0000000000005903
  • Xiong Y, Wang Z, Wang Q, et al. Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics. 2022;12(2):944–962. doi:10.7150/thno.67572
  • Stolzing A, Naaldijk Y, Fedorova V, Sethe S. Hydroxyethylstarch in cryopreservation - mechanisms, benefits and problems. Transfus Apher Sci. 2012;46(2):137–147. doi:10.1016/j.transci.2012.01.007
  • Lin Y, Liu P, Liang W, et al. Luteolin-4′-O-glucoside and its aglycone, two major flavones of Gnaphalium affine D. Don, resist hyperuricemia and acute gouty arthritis activity in animal models. Phytomedicine. 2018;41:54–61. doi:10.1016/j.phymed.2018.02.002
  • Yue P, Li Y, Wan J, et al. Process optimization and evaluation of novel baicalin solid nanocrystals. Int J Nanomedicine. 2013;8:2961–2973. doi:10.2147/IJN.S44924
  • Weng W, Wang Q, Wei C, et al. Preparation, characterization, pharmacokinetics and anti-hyperuricemia activity studies of myricitrin-loaded proliposomes. Int J Pharm. 2019;572:118735. doi:10.1016/j.ijpharm.2019.118735
  • Khan BA, Rashid F, Khan MK, Alqahtani SS, Sultan MH, Almoshari Y. Fabrication of capsaicin loaded nanocrystals: physical characterizations and in vivo evaluation. Pharmaceutics. 2021;13(841):1–14. doi:10.3390/pharmaceutics13060841
  • Zhang T, Li X, Xu J, Shao J, Ding M, Shi S. Preparation, Characterization, and evaluation of breviscapine nanosuspension and its freeze-dried powder. Pharmaceutics. 2022;14(923):1–19 doi:10.3390/pharmaceutics14050923.
  • Yang X, Sheng J, Chen J, et al. The effect of Longan Arillus extract on enhancing oral absorption of bioactive peptides derived from defatted walnut meal hydrolysates. J Funct Foods. 2019;57:309–316. doi:10.1016/j.jff.2019.04.018
  • Hernández GA, López BA, García MN, et al. Nanosuspensions as carriers of active ingredients: chemical composition, development methods, and their biological activities. Food Res Int. 2023;174:113583. doi:10.1016/j.foodres.2023.113583
  • Ao H, Li Y, Li H, et al. Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Deliv. 2020;27(1):816–824. doi:10.1080/10717544.2020.1770372
  • Zhou Y, Fang Q, Niu B, et al. Comparative studies on amphotericin B nanosuspensions prepared by a high pressure homogenization method and an antisolvent precipitation method. Colloids Surf B Biointerfaces. 2018;172:372–379. doi:10.1016/j.colsurfb.2018.08.016
  • Liu K, Zha X, Li Q, Pan L, Luo J. Hydrophobic interaction and hydrogen bonding driving the self-assembling of quinoa protein and flavonoids. Food Hydrocolloids. 2021;118:106807. doi:10.1016/j.foodhyd.2021.106807
  • Li Q, Chen F, Liu Y, et al. A novel albumin wrapped nanosuspension of meloxicam to improve inflammation-targeting effects. Int J Nanomedicine. 2018;13:4711–4725. doi:10.2147/IJN.S160714
  • Müller RH, Peters K, Xie L, Liu K, Zhang X, Li X. Preparation and characterization of quercetin nanosuspensions using gypenosides as novel stabilizers. J Drug Deliv Sci Technol. 2022;67:102962. doi:10.1016/j.jddst.2021.102962
  • Panse N, Gerk PK. The Caco-2 Model: modifications and enhancements to improve efficiency and predictive performance. Int J Pharm. 2022;25:122004. doi:10.1016/j.ijpharm.2022.122004
  • Deng F, Zhang H, Wang X, et al. Transmembrane pathways and mechanisms of rod-like paclitaxel nanocrystals through MDCK polarized monolayer. ACS Appl Mater Interfaces. 2017;9(7):5803–5816. doi:10.1021/acsami.6b15151
  • Patel S, Kim J, Herrera M, Mukherjee A, Kabanov AV, Sahay G. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev. 2019;144:90–111. doi:10.1016/j.addr.2019.08.004
  • Yang M, Lu X, Xu J, et al. Cellular uptake, transport mechanism and anti-inflammatory effect of cyanidin-3-glucoside nanoliposomes in Caco-2/RAW 264.7 co-culture model. Front Nutr. 2022;9:995391. doi:10.3389/fnut.2022.995391
  • Zhang Z, Tao Q, Qin Z, et al. Uptake and transport of naringenin and its antioxidant effects in human intestinal epithelial Caco-2 cells. Front Nutr. 2022;24(9):894117. doi:10.3389/fnut.2022.894117
  • Kojima S, Uchiyama K, Yokota N, et al. Optimal uric acid levels by febuxostat treatment and cerebral, cardiorenovascular risks: post hoc analysis of a randomized controlled trial. Rheumatology. 2022;61(6):2346–2359. doi:10.1093/rheumatology/keab739
  • Hu Q, Lan H, Tian Y, et al. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia. J Contr Release. 2024;365:176–192. doi:10.1016/j.jconrel.2023.11.030
  • Wei C, Wang Q, Weng W, et al. Enhanced oral bioavailability and anti-hyperuricemic activity of liquiritin via a self-nanoemulsifying drug delivery system. J Sci Food Agric. 2022;102(5):2032–2040. doi:10.1002/jsfa.11542