26
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Fabrication of Nanocollagen Using Enhanced Cryogenic Milling Method with Graphene Oxide

ORCID Icon, , , & ORCID Icon
Pages 6845-6855 | Received 21 Feb 2024, Accepted 22 Jun 2024, Published online: 11 Jul 2024

References

  • Roată CE, Ștefan I, Morărașu Ș, et al. Collagen-binding nanoparticles: a scoping review of methods and outcomes. Crystals. 2021;11(11):1396. doi:10.3390/cryst11111396
  • Lo S, Fauzi MB. Current update of collagen nanomaterials—fabrication, characterisation and its applications: a review. Pharmaceutics. 2021;13(3):316. doi:10.3390/pharmaceutics13030316
  • Kochar MP, Singh SP. Role of nano-collagen particles dressing in the management of chronic ulcer: a prospective non-randomized trial on 100 cases. Inter Surg J. 2020;7(3):802–806. doi:10.18203/2349-2902.isj20200826
  • Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021;2(6):1821–1871.
  • Sreedhara S, Joardar J, Ravula V, Tata NR. Preparation and characterization of nanoboron by cryo-milling. Adv. Powder Technol. 2020;31(9):3824–3832. doi:10.1016/j.apt.2020.07.021
  • Katiyar NK, Biswas K, Tiwary CS. Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. Int Mater Rev. 2021;66(7):493–532. doi:10.1080/09506608.2020.1825175
  • Azimi S, Rastgoo A, Sattari S, Rashidi A. Defects and structural analysis of multi-wall carbon nano tubes via ball milling and cryo-milling. J Comput Appl Mech. 2016;47(1):1–9. doi:10.22059/jcamech.2016.59285
  • Beckmann R, Bertling J. Installation and method for the cryogenic milling of material; 1998.
  • Yang K, Huang L, Wang Y, et al. Graphene oxide nanofiltration membranes containing silver nanoparticles: tuning separation efficiency via nanoparticle size. Nanomaterials. 2020;10(3):454. doi:10.3390/nano10030454
  • Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B. 2023;11(31):7280–7299. doi:10.1039/D3TB00654A
  • Niknam Z, Hosseinzadeh F, Shams F, et al. Recent advances and challenges in graphene-based nanocomposite scaffolds for tissue engineering application. J Biomed Mater Res Part A. 2022;110(10):1695–1721. doi:10.1002/jbm.a.37417
  • Senthil R, Berly R, Bhargavi Ram T, Gobi N. Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing. Internat J Artif Organs. 2018;41(8):467–473. doi:10.1177/0391398818775949
  • Bhattacharjee S. DLS and zeta potential–what they are and what they are not?. J Cont Release. 2016;235:337–351. doi:10.1016/j.jconrel.2016.06.017
  • Wolfram J, Zhu M, Yang Y, et al. Safety of nanoparticles in medicine. Current Drug Targets. 2015;16(14):1671–1681. doi:10.2174/1389450115666140804124808
  • Mahmoudi E, Ang WL, Ng CY, Ng LY, Mohammad AW, Benamor A. Distinguishing characteristics and usability of graphene oxide based on different sources of graphite feedstock. J Coll Interf Sci. 2019;542:429–440. doi:10.1016/j.jcis.2019.02.023
  • Fauzi MB, Lokanathan Y, Aminuddin BS, Ruszymah BHI, Chowdhury SR. Ovine tendon collagen: extraction, characterisation and fabrication of thin films for tissue engineering applications. Mat Sci Engineer C. 2016;68:163–171.
  • Wang F, Liu J, Shu Q. Optimization of cryogenic milling parameters for AFRP. Internat JAdvan Manufact Technol. 2017;91:3243–3252.
  • Ramesh S, Karuppasamy K, Vikraman D, et al. Sheet-like morphology CuCo2O4 bimetallic nanoparticles adorned on graphene oxide composites for symmetrical energy storage applications. J Alloys Compo. 2022;892:162182. doi:10.1016/j.jallcom.2021.162182
  • Chang SJ, Niu GC, Kuo SM, Ho CC, Bair MS. Preparation of Nano-Sized Particles from Collagen II by a High-Voltage Electrostatic Field System. IET; 2006:1–6.
  • Shin KH, Kim JW, Koh YH, Kim HE. Novel self-assembly-induced 3D plotting for macro/nano-porous collagen scaffolds comprised of nanofibrous collagen filaments. Mater Lett. 2015;143:265–268. doi:10.1016/j.matlet.2014.12.119
  • Xie X, Mao C, Liu X, et al. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl Mater Interfaces. 2017;9(31):26417–26428. doi:10.1021/acsami.7b06702
  • McDougall S, Dallon J, Sherratt J, Maini P. Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philos Trans Royal Soc A. 2006;364(1843):1385–1405. doi:10.1098/rsta.2006.1773
  • Cao J, Wang Y, Xiao P, et al. Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon. 2013;56:389–391. doi:10.1016/j.carbon.2012.12.075
  • Liu J, Li Q, Xu S. Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J Mater Civil Enginee. 2019;31(4):04019014.
  • Mohamed MA, Jaafar J, Ismail AF, Othman MHD, Rahman MA. Fourier transform infrared (FTIR) spectroscopy. In: Membrane Characterization. Elsevier; 2017:3–29.
  • Hidayah NMS, Liu WW, Lai CW, et al. Comparison on Graphite, Graphene Oxide and Reduced Graphene Oxide: Synthesis and Characterization. AIP Publishing; 2017.
  • Holder CF, Schaak RE. Tutorial on powder X-ray diffraction for characterizing nanoscale materials; 2019.
  • Ungar T. Microstructural parameters from X-ray diffraction peak broadening. Scr Mater. 2004;51(8):777–781. doi:10.1016/j.scriptamat.2004.05.007
  • Chen J, Ahn T, Colón-Bernal ID, Kim J, Banaszak Holl MM. The relationship of collagen structural and compositional heterogeneity to tissue mechanical properties: a chemical perspective. ACS Nano. 2017;11(11):10665–10671. doi:10.1021/acsnano.7b06826
  • Xiao L, Lv J, Liang Y, et al. Structural, physicochemical properties and function of swim bladder collagen in promoting fibroblasts viability and collagen synthesis. LWT. 2023;173:114294. doi:10.1016/j.lwt.2022.114294
  • Abbas AA, Shakir KA, Walsh MK. functional properties of collagen extracted from catfish (Silurus triostegus) Waste. Foods. 2022;11(5):633. doi:10.3390/foods11050633
  • Wang J, Zhang L, Peng F, Shi X, Leong DT. Targeting endothelial cell junctions with negatively charged gold nanoparticles. Chem Mater. 2018;30(11):3759–3767. doi:10.1021/acs.chemmater.8b00840
  • Hanaor D, Michelazzi M, Leonelli C, Sorrell CC. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Europ Ceram Society. 2012;32(1):235–244.
  • Alazaiza MY, Albahnasawi A, Ali GA, et al. Application of natural coagulants for pharmaceutical removal from water and wastewater: a review. Water. 2022;14(2):140. doi:10.3390/w14020140
  • Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. Elsevier. 2017:43–58.
  • Danaei M, Dehghankhold M, Ataei S, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi:10.3390/pharmaceutics10020057
  • Zheng T, Bott S, Huo Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl Mater Interfaces. 2016;8(33):21585–21594. doi:10.1021/acsami.6b06903