40
Views
0
CrossRef citations to date
0
Altmetric
REVIEW

Research and Application of Chitosan Nanoparticles in Orthopedic Infections

, , &
Pages 6589-6602 | Received 10 Apr 2024, Accepted 15 Jun 2024, Published online: 02 Jul 2024

References

  • Masters EA, Ricciardi BF, Bentley KL, et al. Skeletal infections: microbial pathogenesis, immunity, and clinical management. Nat Rev Microbiol. 2022;20(7):385–400. doi:10.1038/s41579-022-00686-0
  • Pincher B, Fenton C, Jeyapalan R, et al. A systematic review of the single-stage treatment of chronic osteomyelitis. J Orthop Surg Res. 2019;14(1):393. doi:10.1186/s13018-019-1388-2
  • Hoskins W, Rainbird S, Peng Y, et al. Incidence, Risk Factors, and Outcome of Ceramic-On-Ceramic Bearing Breakage in Total Hip Arthroplasty. J Arthroplasty. 2021;36(8):2992–2997. doi:10.1016/j.arth.2021.03.021
  • D’Amore T, Goh GS, Courtney PM, et al. Hospital Charges Are Not Associated With Episode-of-Care Costs or Complications After Total Joint Arthroplasty. J Arthroplasty. 2022;37(8S):S727–S731. doi:10.1016/j.arth.2022.01.018
  • Patel R. Periprosthetic Joint Infection. N Engl J Med. 2023;388(3):251–262. doi:10.1056/NEJMra2203477
  • Li S, Meng Y, Pan J, et al. Novel, static, permanent spacers to treat chronic knee periprosthetic joint infections. Int Orthop. 2023;47(10):2585–2589. doi:10.1007/s00264-023-05884-w
  • Senneville E, Dinh A, Ferry T, et al. Tolerance of Prolonged Oral Tedizolid for Prosthetic Joint Infections: results of a Multicentre Prospective Study. Antibiotics. 2020;10(1):4. doi:10.3390/antibiotics10010004
  • Basile G, Gallina M, Passeri A, et al. Prosthetic joint infections and legal disputes: a threat to the future of prosthetic orthopedics. J Orthop Traumatol. 2021;22(1):44. doi:10.1186/s10195-021-00607-6
  • Roof MA, Aggarwal VK, Schwarzkopf R. The Economics of Revision Arthroplasty for Periprosthetic Joint Infection. Arthroplast Today. 2023;23:101213. doi:10.1016/j.artd.2023.101213
  • Negut I, Ristoscu C, Tozar T, et al. Implant Surfaces Containing Bioglasses and Ciprofloxacin as Platforms for Bone Repair and Improved Resistance to Microbial Colonization. Pharmaceutics. 2022;14(6):1175. doi:10.3390/pharmaceutics14061175
  • Ferreira PG, Ferreira VF, da Silva FDC, et al. Chitosans and Nanochitosans: recent Advances in Skin Protection, Regeneration, and Repair. Pharmaceutics. 2022;14(6):1307. doi:10.3390/pharmaceutics14061307
  • Kankariya Y, Chatterjee B. Biomedical Application of Chitosan and Chitosan Derivatives: a Comprehensive Review. Curr Pharm Des. 2023;29(17):1311–1325. doi:10.2174/1381612829666230524153002
  • Lee JH, Tachibana T, Wadamori H, et al. Drug-Loaded Biocompatible Chitosan Polymeric Films with Both Stretchability and Controlled Release for Drug Delivery. ACS Omega. 2023;8(1):1282–1290. doi:10.1021/acsomega.2c06719
  • Mu H, et al. Chitosan conjugation enables intracellular bacteria susceptible to aminoglycoside antibiotic. Glycobiology. 2016;26(11):1190–1197.
  • Seaberg J, Montazerian H, Hossen MN, et al. Hybrid Nanosystems for Biomedical Applications. ACS Nano. 2021;15(2):2099–2142. doi:10.1021/acsnano.0c09382
  • Fornaguera C, Garcia-Celma MJ. Personalized Nanomedicine: a Revolution at the Nanoscale. J Pers Med. 2017;7(4):12. doi:10.3390/jpm7040012
  • Jha R, Mayanovic RA. A Review of the Preparation, Characterization, and Applications of Chitosan Nanoparticles in Nanomedicine. Nanomaterials (Basel). 2023;13(8):1302. doi:10.3390/nano13081302
  • Chen YT, Ricciardi BF, Bentley KL, et al. Immunometabolic Regulation of Bacterial Infection, Biofilms, and Antibiotic Susceptibility. J Innate Immun. 2024;16(1):143–158.
  • Snoddy B, Jayasuriya AC. The use of nanomaterials to treat bone infections. Mater Sci Eng C Mater Biol Appl. 2016;67:822–833. doi:10.1016/j.msec.2016.04.062
  • Lu Y, Cai W-J, Ren Z, et al. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms. 2022;10(10):1909. doi:10.3390/microorganisms10101909
  • Anagnostakos K, Fink B. Antibiotics in Orthopedic Infections. Antibiotics (Basel). 2021;10(11).
  • Guo Y, Song G, Sun M, et al. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front Cell Infect Microbiol. 2020;10:107. doi:10.3389/fcimb.2020.00107
  • Nasser A, Azimi T, Ostadmohammadi S, et al. A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb Pathog. 2020;148:104431. doi:10.1016/j.micpath.2020.104431
  • Mlynarczyk-Bonikowska B, Kowalewski C, Krolak-Ulinska A, et al. Molecular Mechanisms of Drug Resistance in Staphylococcus aureus. Int J Mol Sci. 2022;23(15):8088. doi:10.3390/ijms23158088
  • Mirzaei R, Campoccia D, Ravaioli S, et al. Emerging Issues and Initial Insights into Bacterial Biofilms: from Orthopedic Infection to Metabolomics. Antibiotics (Basel). 2024;13(2):184.
  • Aransiola SA, Selvaraj B, Maddela NR. Bacterial biofilm formation and anti-biofilm strategies. Res Microbiol. 2023;104172.
  • Uruen C, et al. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel). 2020;10(1).
  • Hathroubi S, Mekni MA, Domenico P, et al. Biofilms: microbial Shelters Against Antibiotics. Microb Drug Resist. 2017;23(2):147–156. doi:10.1089/mdr.2016.0087
  • Gebreyohannes G, et al. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon. 2019;5(8):e02192.
  • Penesyan A, Nagy SS, Kjelleberg S, et al. Rapid microevolution of biofilm cells in response to antibiotics. NPJ Biofilms Microbiomes. 2019;5(1):34. doi:10.1038/s41522-019-0108-3
  • Zhang K, et al. Promising Therapeutic Strategies Against Microbial Biofilm Challenges. Front Cell Infect Microbiol. 2020;10:359.
  • Gomes P, Forrester M, Pace M, et al. May the force be with you: the role of hyper-mechanostability of the bone sialoprotein binding protein during early stages of Staphylococci infections. Front Chem. 2023;11:1107427. doi:10.3389/fchem.2023.1107427
  • Khalid M, Bora T, Ghaithi AA, et al. Raman Spectroscopy detects changes in Bone Mineral Quality and Collagen Cross-linkage in Staphylococcus Infected Human Bone. Sci Rep. 2018;8(1):9417. doi:10.1038/s41598-018-27752-z
  • Walter N, Mendelsohn D, Brochhausen C, et al. Intracellular S. aureus in Osteoblasts in a Clinical Sample from a Patient with Chronic Osteomyelitis-A Case Report. Pathogens. 2021;10(8):1064. doi:10.3390/pathogens10081064
  • Peyrusson F, Varet H, Nguyen TK, et al. Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun. 2020;11(1):2200. doi:10.1038/s41467-020-15966-7
  • Krauss JL, Roper PM, Ballard A, et al. Staphylococcus aureus Infects Osteoclasts and Replicates Intracellularly. mBio. 2019;10(5). doi:10.1128/mBio.02447-19
  • Proctor R. Respiration and Small Colony Variants of Staphylococcus aureus. Microbiol Spectr. 2019;7(3). doi:10.1128/microbiolspec.GPP3-0069-2019
  • Bogut A, Koper P, Marczak M, et al. The first genomic characterization of a stable, hemin-dependent small colony variant strain of Staphylococcus epidermidis isolated from a prosthetic-joint infection. Front Microbiol. 2023;14:1289844. doi:10.3389/fmicb.2023.1289844
  • Zhou S, Rao Y, Li J, et al. Staphylococcus aureus small-colony variants: formation, infection, and treatment. Microbiol Res. 2022;260:127040. doi:10.1016/j.micres.2022.127040
  • Sato T, Uno T, Kawamura M, et al. In vitro Tolerability of Biofilm-Forming Trimethoprim-/Sulfamethoxazole-Resistant Small Colony Variants of Staphylococcus aureus Against Various Antimicrobial Agents. Microb Drug Resist. 2021;27(9):1282–1289. doi:10.1089/mdr.2020.0379
  • Guo H, et al. Biofilm and Small Colony Variants-An Update on Staphylococcus aureus Strategies toward Drug Resistance. Int J Mol Sci. 2022;23(3):567.
  • Kriegeskorte A, Grubmã¼ller S, Huber C, et al. Staphylococcus aureus small colony variants show common metabolic features in central metabolism irrespective of the underlying auxotrophism. Front Cell Infect Microbiol. 2014;4:141. doi:10.3389/fcimb.2014.00141
  • Pal K, Bharti D, Sarkar P, et al. Selected Applications of Chitosan Composites. Int J Mol Sci. 2021;22(20):10968. doi:10.3390/ijms222010968
  • Shariatinia Z. Carboxymethyl chitosan: properties and biomedical applications. Int J Biol Macromol. 2018;120(Pt B):1406–1419. doi:10.1016/j.ijbiomac.2018.09.131
  • Wang W, Xue C, Mao X. Chitosan: structural modification, biological activity and application. Int J Biol Macromol. 2020;164:4532–4546. doi:10.1016/j.ijbiomac.2020.09.042
  • Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: a recent update. Chirality. 2022;34(9):1166–1190. doi:10.1002/chir.23477
  • Ardean C, Davidescu CM, Nemeş NS, et al. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics. 2021;13(10):1639. doi:10.3390/pharmaceutics13101639
  • Ardean C, Davidescu CM, Nemeş NS, et al. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int J Mol Sci. 2021;22(14):7449. doi:10.3390/ijms22147449
  • Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016;85:467–475. doi:10.1016/j.ijbiomac.2016.01.022
  • Tian Y, Wu D, Wu D, et al. Chitosan-Based Biomaterial Scaffolds for the Repair of Infected Bone Defects. Front Bioeng Biotechnol. 2022;10:899760. doi:10.3389/fbioe.2022.899760
  • Webber JL, Namivandi-Zangeneh R, Drozdek S, et al. Incorporation and antimicrobial activity of nisin Z within carrageenan/chitosan multilayers. Sci Rep. 2021;11(1):1690. doi:10.1038/s41598-020-79702-3
  • Ke CL, Deng F-S, Chuang C-Y, et al. Antimicrobial Actions and Applications of Chitosan. Polymers. 2021;13(6):904. doi:10.3390/polym13060904
  • Perinelli DR, Fagioli L, Campana R, et al. Chitosan-based nanosystems and their exploited antimicrobial activity. Eur J Pharm Sci. 2018;117:8–20. doi:10.1016/j.ejps.2018.01.046
  • Beck BH, Yildirim‐Aksoy M, Shoemaker CA, et al. Antimicrobial activity of the biopolymer chitosan against Streptococcus iniae. J Fish Dis. 2019;42(3):371–377. doi:10.1111/jfd.12938
  • Wang M, Bi S, Qin D, et al. Quantitative evaluation of the antibacterial effectiveness and efficiency of chitosan considering the effect of neutralization. Carbohydr Polym. 2021;265:117918. doi:10.1016/j.carbpol.2021.117918
  • Pelegrino MT, Pieretti JC, Nakazato G, et al. Chitosan chemically modified to deliver nitric oxide with high antibacterial activity. Nitric Oxide. 2021;106:24–34. doi:10.1016/j.niox.2020.10.003
  • Wang L, Xin M, Li M, et al. Effect of the structure of chitosan quaternary phosphonium salt and chitosan quaternary ammonium salt on the antibacterial and antibiofilm activity. Int J Biol Macromol. 2023;242(Pt 2):124877. doi:10.1016/j.ijbiomac.2023.124877
  • Jonassen H, Kjoniksen A-L, Hiorth M. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules. 2012;13(11):3747–3756. doi:10.1021/bm301207a
  • Chae K-S, Shin C-S, Shin W-S. Characteristics of cricket (Gryllus bimaculatus) chitosan and chitosan-based nanoparticles. Food Sci Biotechnol. 2018;27(3):631–639. doi:10.1007/s10068-018-0314-4
  • Ganesan S, Alagarasan JK, Sonaimuthu M, et al. Preparation and Characterization of Salsalate-Loaded Chitosan Nanoparticles: in Vitro Release and Antibacterial and Antibiofilm Activity. Mar Drugs. 2022;20(12):733. doi:10.3390/md20120733
  • Holmes MD, Narro AJ, Jones HL, et al. The potential of suspended chitosan nanoparticles as a surgical irrigation fluid. J Orthop Res. 2024;42(1):223–229. doi:10.1002/jor.25667
  • Dai X, Liu X, Li Y, et al. Nitrogen-phosphorous co-doped carbonized chitosan nanoparticles for chemotherapy and ROS-mediated immunotherapy of intracellular Staphylococcus aureus infection. Carbohydr Polym. 2023;315:121013. doi:10.1016/j.carbpol.2023.121013
  • Haji Hossein Tabrizi A, Habibi M, Foroohi F, et al. Investigation of the effects of antimicrobial and anti-biofilm peptide IDR1018 and chitosan nanoparticles on ciprofloxacin-resistant Escherichia coli. J Basic Microbiol. 2022;62(10):1229–1240. doi:10.1002/jobm.202200156
  • Rivera Aguayo P, Bruna Larenas T, Alarcón Godoy C, et al. Antimicrobial and Antibiofilm Capacity of Chitosan Nanoparticles against Wild Type Strain of Pseudomonas sp. Isolated from Milk of Cows Diagnosed with Bovine Mastitis. Antibiotics. 2020;9(9):551. doi:10.3390/antibiotics9090551
  • Costa EM, Silva S, Veiga M, et al. Exploring chitosan nanoparticles as effective inhibitors of antibiotic resistant skin microorganisms - From in vitro to ex vitro testing. Carbohydr Polym. 2018;201:340–346. doi:10.1016/j.carbpol.2018.08.083
  • Ikono R, Vibriani A, Wibowo I, et al. Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms. BMC Res Notes. 2019;12(1):383. doi:10.1186/s13104-019-4422-x
  • Zhao D, Yu S, Sun B, et al. Biomedical Applications of Chitosan and Its Derivative Nanoparticles. Polymers (Basel). 2018;10(4):462. doi:10.3390/polym10040462
  • Nie B, et al. Bone infection site targeting nanoparticle-antibiotics delivery vehicle to enhance treatment efficacy of orthopedic implant related infection. Bioact Mater. 2022;16:134–148.
  • Scolari IR, Páez PL, Musri MM, et al. Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Deliv Transl Res. 2020;10(5):1403–1417. doi:10.1007/s13346-019-00705-3
  • Zhang Z, Chen J, Zou L, et al. Preparation, Characterization, and Staphylococcus aureus Biofilm Elimination Effect of Baicalein-Loaded beta-Cyclodextrin-Grafted Chitosan Nanoparticles. Int J Nanomed. 2022;17:5287–5302. doi:10.2147/IJN.S383182
  • Zheng X, Gao M, Wu L, et al. Ceftazidime-assisted synthesis of ultrasmall chitosan nanoparticles for biofilm penetration and eradication of Pseudomonas aeruginosa. Sci Rep. 2023;13(1):13481. doi:10.1038/s41598-023-40653-0
  • Maya S, Indulekha S, Sukhithasri V, et al. Efficacy of tetracycline encapsulated O-carboxymethyl chitosan nanoparticles against intracellular infections of Staphylococcus aureus. Int J Biol Macromol. 2012;51(4):392–399. doi:10.1016/j.ijbiomac.2012.06.009
  • Jamil B, Habib H, Abbasi S, et al. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydr Polym. 2016;136:682–691. doi:10.1016/j.carbpol.2015.09.078
  • Kovacova M, Daneu N, Tkáčiková Ľ, et al. Sustainable One-Step Solid-State Synthesis of Antibacterially Active Silver Nanoparticles Using Mechanochemistry. Nanomaterials (Basel). 2020;10(11):2119. doi:10.3390/nano10112119
  • Bruna T, Maldonado-Bravo F, Jara P, et al. Silver Nanoparticles and Their Antibacterial Applications. Int J Mol Sci. 2021;22(13):7202. doi:10.3390/ijms22137202
  • Fanoro OT, Oluwafemi OS. Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharmaceutics. 2020;12(11):1044. doi:10.3390/pharmaceutics12111044
  • Chithambharan A, Pottail L, Mirle RM, et al. Bioinspired Gold Nanoparticle Synthesis Using Terminalia bellerica Fruit Parts and Exploring Their Anti-bacterial Potency In Vitro. Indian J Microbiol. 2021;61(3):298–305. doi:10.1007/s12088-021-00937-3
  • Ermini ML, Voliani V. Antimicrobial Nano-Agents: the Copper Age. ACS Nano. 2021;15(4):6008–6029. doi:10.1021/acsnano.0c10756
  • Yi G, Teong SP, Liu S, et al. Iron-based nano-structured surfaces with antimicrobial properties. J Mater Chem B. 2020;8(44):10146–10153. doi:10.1039/D0TB01941K
  • Ge J, Li M, Fan J, et al. Synthesis, characterization, and antibacterial activity of chitosan-chelated silver nanoparticles. J Biomater Sci Polym Ed. 2024;35(1):45–62. doi:10.1080/09205063.2023.2265629
  • Shehabeldine AM, et al. Multifunctional Silver Nanoparticles Based on Chitosan: antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J Fungi (Basel). 2022;8(6):865.
  • Ragab HM, et al. Fabrication and Characterization of Silver Nanoparticle-Doped Chitosan/Carboxymethyl Cellulose Nanocomposites for Optoelectronic and Biological Applications. ACS Omega. 2024;9(20):22112–22122.
  • Mirda E, Idroes R, Khairan K, et al. Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities. Polymers (Basel). 2021;13(22):3990. doi:10.3390/polym13223990
  • Rezazadeh NH, Buazar F, Matroodi S. Synergistic effects of combinatorial chitosan and polyphenol biomolecules on enhanced antibacterial activity of biofunctionalaized silver nanoparticles. Sci Rep. 2020;10(1):19615. doi:10.1038/s41598-020-76726-7
  • Hashem AH, Shehabeldine AM, Ali OM, et al. Synthesis of Chitosan-Based Gold Nanoparticles: antimicrobial and Wound-Healing Activities. Polymers (Basel). 2022;14(11):2293. doi:10.3390/polym14112293
  • Fuster MG, Montalbán MG, Carissimi G, et al. Antibacterial Effect of Chitosan-Gold Nanoparticles and Computational Modeling of the Interaction between Chitosan and a Lipid Bilayer Model. Nanomaterials (Basel). 2020;10(12):2340. doi:10.3390/nano10122340
  • Qian J, Pan C, Liang C. Antimicrobial activity of Fe-loaded chitosan nanoparticles. Eng Life Sci. 2017;17(6):629–634. doi:10.1002/elsc.201600172
  • Barie PS, Narayan M, Sawyer RG. Immunization Against Staphylococcus aureus Infections. Surg Infect (Larchmt). 2018;19(8):750–756. doi:10.1089/sur.2018.263
  • Xu C, Xing R, Liu S, et al. In vivo immunological activity of chitosan-derived nanoparticles. Int J Biol Macromol. 2024;262(Pt 2):130105. doi:10.1016/j.ijbiomac.2024.130105
  • Hosseini SA, et al. Immunogenicity Evaluation of Recombinant Staphylococcus aureus Enterotoxin B (rSEB) and rSEB-loaded Chitosan Nanoparticles Following Nasal Administration. Iran J Allergy Asthma Immunol. 2020;19(2):159–171.
  • Mehrabi M, et al. Chitosan-based Nanoparticles in Mucosal Vaccine Delivery. Arch Razi Inst. 2018;73(3):165–176.
  • Zhao J, Li J, Jiang Z, et al. Chitosan, N,N,N-trimethyl chitosan (TMC) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC): the potential immune adjuvants and nano carriers. Int J Biol Macromol. 2020;154:339–348. doi:10.1016/j.ijbiomac.2020.03.065
  • Elifranji ZO, Haddad B, Salameh A, et al. Microbiological Profile and Drug Resistance Analysis of Postoperative Infections following Orthopedic Surgery: a 5-Year Retrospective Review. Adv Orthop. 2022;2022:7648014. doi:10.1155/2022/7648014
  • Runner RP, Mener A, Roberson JR, et al. Prosthetic Joint Infection Trends at a Dedicated Orthopaedics Specialty Hospital. Adv Orthop. 2019;2019:4629503. doi:10.1155/2019/4629503
  • Gaglio SC, et al. Efficiency of Chitosan Nanocarriers in Vaccinology for Mucosal Immunization. Vaccines (Basel). 2023;11(8).
  • Miyazawa N, Hakamada M, Mabuchi M. Antimicrobial mechanisms due to hyperpolarisation induced by nanoporous Au. Sci Rep. 2018;8(1):3870. doi:10.1038/s41598-018-22261-5
  • Jedrzejczyk RJ, Turnau K, Jodłowski PJ, et al. Antimicrobial Properties of Silver Cations Substituted to Faujasite Mineral. Nanomaterials (Basel). 2017;7(9):240. doi:10.3390/nano7090240
  • Sonin D, Pochkaeva E, Zhuravskii S, et al. Biological Safety and Biodistribution of Chitosan Nanoparticles. Nanomaterials. 2020;10(4):810. doi:10.3390/nano10040810
  • Rathinam S, Solodova S, Kristjánsdóttir I, et al. The antibacterial structure-activity relationship for common chitosan derivatives. Int J Biol Macromol. 2020;165(Pt B):1686–1693. doi:10.1016/j.ijbiomac.2020.09.200
  • Xu J, et al. Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of Staphylococcus aureus. Antibiotics (Basel). 2022;11(10).
  • Lin X, Gong X, Ruan Q, et al. Antimicrobial Application of Chitosan Derivatives and their Nanocomposites. Curr Med Chem. 2023;30(15):1736–1755. doi:10.2174/0929867329666220803114729