103
Views
9
CrossRef citations to date
0
Altmetric
Original Research

Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure

, , , , , & show all
Pages 597-605 | Published online: 12 Feb 2016

References

  • GeLLiQWangMOuyangJLiXXingMMNanosilver particles in medical applications: synthesis, performance, and toxicityInt J Nanomed2014923992407
  • WijnhovenSWPeijnenburgWJHerbertsCANano-silver-a review of available data and knowledge gaps in human and environmental risk assessmentNanotoxicology200932109138
  • TangJXiongLWangSDistribution, translocation and accumulation of silver nanoparticles in ratsJ Nanosci Nanotechnol2009984924493219928170
  • FoldbjergRAutrupHMechanisms of silver nanoparticle toxicityArch Basic Appl Med201311515
  • BartłomiejczykTLankoffAKruszewskiMSzumielISilver nanoparticles–allies or adversariesAnn Agric Environ Med2013201485423540211
  • PatlollaAKHackettDTchounwouPBGenotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley ratsFood Chem Toxicol201585526010.1016/j.fct.2015.05.00526032631
  • PelgriftRYFriedmanAJNanotechnology as a therapeutic tool to combat microbial resistanceAdv Drug Deliv Rev20136513–141803181523892192
  • LiuXZhuBZouHCarbamylated erythropoietin mediates retinal neuroprotection in streptozotocin-induced early-stage diabetic ratsGraefes Arch Clin Exp Ophthalmol201525381263127225725621
  • MofidiABaderAPavlicaSThe use of erythropoietin and its derivatives to treat spinal cord injuryMini Rev Med Chem201111976377021707531
  • NguyenAQCherryBHScottGFRyouMGMalletRTErythropoietin: powerful protection of ischemic and post-ischemic brainExp Biol Med (Maywood)2014239111461147524595981
  • WangYLuXHeJZhaoWInfluence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney diseaseStem Cell Res Ther20156110025998259
  • Sanchis-GomarFGarcia-GimenezJLPareja-GaleanoHRomagnoliMPerez-QuilisCLippiGErythropoietin and the heart: physiological effects and the therapeutic perspectiveInt J Cardiol2014171211612524377712
  • Van RijtWGVan GoorHPloegRJLeuveninkHGErythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular eventsTranspl Int201427324124823964738
  • ChattongSTanamaiJKiatsomchaiPGlutaraldehyde erythropoietin protects kidney in ischaemia/reperfusion injury without increasing red blood cell productionBr J Pharmacol2013168118919922861820
  • DubeyPMataiIKumarSUSachdevABhushanBGopinathPPerturbation of cellular mechanistic system by silver nanoparticle toxicity: cytotoxic, genotoxic and epigenetic potentialsAdv Colloid Interface Sci201522142125935324
  • GailletSRouanetJMSilver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms – a reviewFood Chem Toxicol201577586325556118
  • HockenberyDMOltvaiZNYinXMMillimanCLKorsmeyerSJBcl-2 functions in an antioxidant pathway to prevent apoptosisCell19937522412517503812
  • HildemanDAMitchellTAronowBWojciechowskiSKapplerJMarrackPControl of Bcl-2 expression by reactive oxygen speciesProc Natl Acad Sci U S A200310025150351504014657380
  • BrinesMCeramiAThe receptor that tames the innate immune responseMol Med20121848649622183892
  • YangCZhaoTLinMHelix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine modelExp Biol Med (Maywood)2013238111111923479770
  • BrzoskaKMeczynska-WielgoszSStepkowskiTMKruszewskiMAdaptation of HepG2 cells to silver nanoparticles-induced stress is based on the pro-proliferative and anti-apoptotic changes in gene expressionMutagenesis201530343143925681789
  • KruszewskiMBrzoskaKBrunborgGToxicity of silver nanomaterials in higher eukaryotesAdv Mol Toxicol20115179218
  • BhakatCChetalGSarkarPSinghPBabuSReddyAEffects of silver nanoparticles synthesize from ficus benjamina on normal cells and cancer cellsIOSR J Pharm Biol Sci201213336
  • KangSJLeeYJLeeEKKwakMKSilver nanoparticles-mediated G2/M cycle arrest of renal epithelial cells is associated with NRF2-GSH signalingToxicol Lett2012211333434122546375
  • LeeYSKimDWLeeYHSilver nanoparticles induce apoptosis and G2/M arrest via PKCzeta-dependent signaling in A549 lung cellsArch Toxicol201185121529154021611810
  • AhamedMAlsalhiMSSiddiquiMKSilver nanoparticle applications and human healthClin Chim Acta201041123–241841184820719239
  • Rosas-HernandezHJimenez-BadilloSMartinez-CuevasPPEffects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic ringsToxicol Lett20091912–330531319800954
  • HuiLBakiriLMairhorferAp38alpha suppresses normal and cancer cell proliferation by antagonizing the JNK-c-Jun pathwayNature2007396741749
  • SabapathyKHochedlingerKNamSYBauerAKarinMWagnerEFDistinct roles for JNK1 and JNK2 in regulating JNK activity and c-Jun-dependent cell proliferationMol Cell200415571372515350216
  • HsinY-HChenC-FHuangSShihT-SLaiP-SChuehPJThe apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cellsToxicol Lett2008179313013918547751
  • SatapathySRMohapatraPDasDSiddharthSKunduCNThe apoptotic effect of plant based nanosilver in colon cancer cells is a p53 dependent process involving ROS and JNK cascadePathol Oncol Res201521240541125359126
  • FanYBergmannAApoptosis-induced compensatory proliferation. The Cell is dead. Long live the Cell!Trends Cell Biol2008181046747318774295
  • RyooHDGorencTStellerHApoptotic cells can induce compensatory cell proliferation through the JNK and the wingless signaling pathwaysDev Cell20047449150115469838
  • Jacobs-HelberSMRyanJJSawyerSTJNK and p38 are activated by erythropoietin (EPO) but are not induced in apoptosis following EPO withdrawal in EPO-dependent HCD57 cellsBlood200096393394010910907
  • Jacobs-HelberSMSawyerSTJun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell linesBlood2004104369670315059850
  • ChongZZKangJQMaieseKApaf-1, Bcl-xL, cytochrome c, and caspase-9 form the critical elements for cerebral vascular protection by erythropoietinJ Cereb Blood Flow Metab200323332033012621307
  • NikoletopoulouVMarkakiMPalikarasKTavernarakisNCrosstalk between apoptosis, necrosis and autophagyBiochim Biophys Acta20131833123448345923770045
  • LemaireCAndréauKSouvannavongVAdamAInhibition of caspase activity induces a switch from apoptosis to necrosisFEBS Lett199842522662709559663
  • KatavetinPTungsangaKEiam-OngSNangakuMAntioxidative effects of erythropoietinKidney Int200772S10S15
  • KatavetinPInagiRMiyataTErythropoietin induces heme oxygenase-1 expression and attenuates oxidative stressBiochem Biophys Res Commun2007359492893417560935
  • JinWKongJLuTErythropoietin prevents secondary brain injury induced by cortical lesion in mice: possible involvement of Nrf2 signaling pathwayAnn Clin Lab Sci2011411253221325251
  • GencKEgrilmezMYGencSErythropoietin induces nuclear translocation of Nrf2 and heme oxygenase-1 expression in SH-SY5Y cellsCell Biochem Funct201028319720120229611
  • PiaoMJKimKCChoiJ-YChoiJHyunJWSilver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cellsToxicol Lett2011207214314821925250
  • KangSJRyooI-gLeeYJKwakM-KRole of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicityToxicol Appl Pharmacol20122581899822036727