370
Views
18
CrossRef citations to date
0
Altmetric
Review

Evaluating Nephrocheck® as a Predictive Tool for Acute Kidney Injury

ORCID Icon, , , ORCID Icon, &
Pages 85-96 | Published online: 24 Apr 2020

References

  • Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients. a multinational, multicenter study. JAMA. 2005;294(7):813–818. doi:10.1001/jama.294.7.81316106006
  • Kellum JA, Lameire N, Aspelin P, et al. Kidney disease: improving Global Outcomes (KDIGO) acute kidney injury work group. KDIGO Clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:19–36.
  • Hoste EA, Bagshaw SM, Bellomo R, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41:1411–1423. doi:10.1007/s00134-015-3934-726162677
  • Bellomo R, Ronco C, Kellum JA, Mehta RL; Acute Dialysis Quality Initiative workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care. 2004;8:R204–12. doi:10.1186/cc287215312219
  • Haase M, Kellum JA, Ronco C. Subclinical AKI–an emerging syndrome with important consequences. Nat Rev Nephrol. 2012;8(12):735–739. doi:10.1038/nrneph.2012.19723007617
  • Husain-Syed F, Ferrari F, Sharma A, et al. Persistent decrease of renal functional reserve in patients after cardiac surgery-associated acute kidney injury despite clinical recovery. Nephrol Dial Transplant. 2019;34(2):308–317. doi:10.1093/ndt/gfy22730053231
  • Mishra J, Dent C, Tarabishi R, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–1238.15811456
  • Murray P, Mehta R, Shaw A, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2020;180(3):513–521.
  • Fan W, Ankawi G, Zhang J, et al. Current understanding and future directions in the application of TIMP-2 and IGFBP7 in AKI clinical practice. Clin Chem Lab Med. 2019;57(5):567–576. doi:10.1515/cclm-2018-077630179848
  • Di Leo L, Nalesso F, Garzotto F, et al. Predicting acute kidney injury in intensive care unit patients: the role of tissue inhibitor of metalloproteinases-2 and insulin-like growth factor-binding protein-7 biomarkers. Blood Purif. 2018;45(1–3):270–277. doi:10.1159/00048559129478052
  • Ortega LM, Heung M. The use of cell cycle arrest biomarkers in the early detection of acute kidney injury. Is this the new renal troponin? Nefrologia. 2018;38(4):361–367. doi:10.1016/j.nefro.2017.11.01329627229
  • Gomez H, Ince C, De Backer D, et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury. Shock. 2014;41(1):3–11. doi:10.1097/SHK.0000000000000052
  • Barnum KJ, O’Connell MJ. Cell cycle regulation by checkpoints. Methods Mol Biol. 2014;1170:29–40.24906307
  • Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med. 2010;16(5):535–543. doi:10.1038/nm.214420436483
  • Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care. 2013;17:R25. doi:10.1186/cc1250323388612
  • Hu J, Chen R, Liu S, Yu X, Zou J, Ding X. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2016;30:82–89. doi:10.1053/j.jvca.2015.06.01726482484
  • Nadim MK MD, Forni LG, Bihorac A. Cardiac and vascular surgery–associated acute kidney injury: the 20th international consensus conference of the ADQI (Acute Disease Quality Initiative) Group. J Am Heart Assoc. 2018;7(11). doi:10.1161/JAHA.118.008834
  • Meersch M, Schmidt C, Van Aken H, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460. doi:10.1371/journal.pone.009346024675717
  • Cummings JJ, Shaw AD, J S, Lopez MG, O’Neal JB, Billings FT. Intraoperative prediction of cardiac surgery-associated acute kidney injury using urinary biomarkers of cell cycle arrest. J Thorac Cardiovasc Surg. 2019;157(4):1545–1553. doi:10.1016/j.jtcvs.2018.08.09030389130
  • Mayer T, Bolliger D, Scholz M, et al. Urine biomarkers of tubular cell damage for the prediction of acute kidney injury after cardiac surgery- a pilot study. J Cardiothorac Vasc Anesth. 2017;31:2072–2079. doi:10.1053/j.jvca.2017.04.02428803769
  • Oezkur M, Magyara A, Thomasa P, et al. TIMP-2*IGFBP7 (Nephrocheck®) measurements at intensive care unit admission after cardiac surgery are predictive for acute kidney injury within 48 hours. Kidney Blood Press Res. 2017;42(3):456–467. doi:10.1159/00047929828750409
  • Zaouter C, Potvin J, Bats ML, Beauvieux MC, Remy A, Ouattara A. A combined approach for the early recognition of acute kidney injury after adult cardiac surgery. Anaesth Crit Care Pain Med. 2018;37(4):335–341. doi:10.1016/j.accpm.2018.05.00129777769
  • Grieshaber P, Möller P, Arneth B, et al. Predicting cardiac surgery-associated acute kidney injury using a combination of clinical risk scores and urinary biomarkers. Thorac Cardiovasc Surg. 2019.
  • Birnie K, Verheyden V, Pagano D, et al. UK AKI in cardiac surgery collaborators. predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit Care. 2014;18(6):606. doi:10.1186/s13054-014-0606-x25673427
  • Wetz AJ, Richardt EM, Wand S, et al. Quantification of urinary TIMP-2 and IGFBP-7: an adequate diagnostic test to predict acute kidney injury after cardiac surgery? Crit Care. 2015;19:3. doi:10.1186/s13054-014-0717-425560277
  • Meersch M, Schmidt C, Hofmeier A, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43:1551–1561. doi:10.1007/s00134-016-4670-328110412
  • Levante C, Ferrari F, Manenti C, et al. Routine adoption of TIMP2 and IGFBP7 biomarkers in cardiac surgery for early identification of acute kidney injury. Int J Artif Organs. 2017;40(12):714–718. doi:10.5301/ijao.500066129148021
  • Rundgren M, Ullén S, Morgan MPG, et al. Renal function after out-of-hospital cardiac arrest; The influence of temperature management and coronary angiography, a post hoc study of the target temperature management trial. Crit Care. 2019;23(1):1–10. doi:10.1186/s13054-019-2390-030606235
  • Beitland S, Waldum-Grevbo BE, Nakstad ER, et al. Urine biomarkers give early prediction of acute kidney injury and outcome after out-of- hospital cardiac arrest. Crit Care. 2016;20(1):1–11.26728475
  • Adler C, Heller T, Schregel F, et al. TIMP-2/IGFBP7 predicts acute kidney injury in out-of-hospital cardiac arrest survivors. Crit Care. 2018;22(1):1–9. doi:10.1186/s13054-018-2042-929301549
  • Titeca-Beauport D, Daubin D, Chelly J, et al. The urine biomarkers TIMP2 and IGFBP7 can identify patients who will experience severe acute kidney injury following a cardiac arrest: a prospective multicentre study. Resuscitation. 2019;141:104–110. doi:10.1016/j.resuscitation.2019.06.00831216431
  • House AA, Anand I, Bellomo R, et al.; Acute Dialysis Quality Initiative Consensus Group. Definition and classification of cardio-renal syndromes: workgroup statements from the 7th ADQI consensus conference. Nephrol Dial Transplant. 2010;25(5):1416–1420.20228069
  • Ismail Y, Kasmikha Z, Green HL, McCullough PA. Cardio-renal syndrome type 1: epidemiology, pathophysiology, and treatment. Semin Nephrol. 2012;32(1):18–25. doi:10.1016/j.semnephrol.2011.11.00322365158
  • Schanz M, Shi J, Wasser C, Alscher MD, Kimmel M. Urinary [TIMP-2] × [IGFBP7] for risk prediction of acute kidney injury in decompensated heart failure. Clin Cardiol. 2017;40(7):485–491. doi:10.1002/clc.2268328295429
  • Atici A, Emet S, Cakmak R, et al. Type I cardiorenal syndrome in patients with acutely decompensated heart failure: the importance of new renal biomarkers. Eur Rev Med Pharmacol Sci. 2018;22(11):3534–3543. doi:10.26355/eurrev_201806_1518029917208
  • Yang J, Lim SY, Kim MG, Jung CW, Cho WY, Jo SK. Urinary tissue inhibitor of metalloproteinase and insulin-like growth factor-7 as early biomarkers of delayed graft function after kidney transplantation. Transplant Proc. 2017;49(9):2050–2054. doi:10.1016/j.transproceed.2017.09.02329149959
  • Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int. 2015;28(12):1392–1404. doi:10.1111/tri.1263626174580
  • Schmitt FCF, Salgado E, Friebe J, et al. Cell cycle arrest and cell death correlate with the extent of ischaemia and reperfusion injury in patients following kidney transplantation – results of an observational pilot study. Transpl Int. 2018;31(7):751–760. doi:10.1111/tri.1314829505681
  • Bank J, Ruhaak R, Soonawala D, et al. Urinary TIMP-2 predicts the presence and duration of delayed graft function in donation after circulatory death kidney transplant recipients. Transplantation. 2019;103(5):1014–1023. doi:10.1097/TP.000000000000247230300282
  • Wang K, Xie S, Xiao K, Yan P, He W, Xie L. Biomarkers of sepsis-induced acute kidney injury. Biomed Res Int. 2018;24(2018):6937947.
  • Cuartero M, Ballús J, Sabater J, Pérez X, Nin N, Ordonez-Llanos J. Betbesé AJ Cell-cycle arrest biomarkers in urine to predict acute kidney injury in septic and non-septic critically ill patients. Ann Intensive Care. 2017;7(1):92. doi:10.1186/s13613-017-0317-y28884304
  • Honore PM, Nguyen HB, Gong M, et al., Sapphire and Topaz Investigators. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 for risk stratification of acute kidney injury in patients with sepsis. Crit Care Med. 2016;44(10):1851–1860. doi:10.1097/CCM.000000000000182727355527
  • Maizel J, Daubin D, Vong LV, et al. Urinary TIMP2 and IGFBP7 identifies high risk patients of short-term progression from mild and moderate to severe acute kidney injury during septic shock: a prospective cohort study. Dis Markers. 2019;2019:3471215. doi:10.1155/2019/347121531061681
  • Clark WR, Neri M, Garzotto F, et al. The future of critical care: renal support in 2027. Crit Care. 2017;21(1):92. doi:10.1186/s13054-017-1665-628395664
  • Gocze I, Koch M, Renner P, et al. Urinary biomarkers TIMP-2 and IGFBP7 early predict acute kidney injury after major surgery. PLoS One. 2015;10(3):e0120863. doi:10.1371/journal.pone.012086325798585
  • van der Vorst MJDL, Neefjes ECW, Toffoli EC, et al. Incidence and risk factors for acute kidney injury in head and neck cancer patients treated with concurrent chemoradiation with high-dose cisplatin. BMC Cancer. 2019;19(1):1066. doi:10.1186/s12885-019-6233-931703649
  • Lewington AJ, Cerdá J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 2013;84:457–467. doi:10.1038/ki.2013.15323636171
  • Schanz M, Hoferer A, Shi J, Alshcer MD, Kimmel M. Urinary TIMP2·IGFBP7 for the prediction of platinum induced acute renal injury. Int J Nephrol Renovasc Dis. 2017;10:17581. doi:10.2147/IJNRD.S135271
  • Toprak Z, Cebeci E, Helvaci SA, et al. Cisplatin nephrotoxicity is not detected by urinary cell-cycle arrest biomarkers in lung cancer patients. Int Urol Nephrol. 2017;49(6):1041–1047. doi:10.1007/s11255-017-1556-428255639
  • Noto A, Cortegiani A, David A. Nephrocheck: should we consider urine osmolality? Crit Care. 2019;23(1):1–2. doi:10.1186/s13054-019-2341-930606235
  • L’Acqua C, Sisillo E, Salvi L, Introcaso G, Biondi ML. Nephrocheck after cardiac surgery: does it play a role in daily practice? A sequel of “Nephrocheck results should be corrected for dilution.”. Int J Artif Organs. 2019;42(11):665–667. doi:10.1177/039139881985295831151359
  • Ronco C, Kellum JA, Haase M. Subclinical AKI is still AKI. Crit Care. 2012;16(3):313. doi:10.1186/cc1124022721504
  • Ronco C. Acute kidney injury: from clinical to molecular diagnosis. Crit Care. 2016;20(1):201. doi:10.1186/s13054-016-1373-727384344
  • Husain-Syed F, Ferrari F, Sharma A, et al. Preoperative renal functional reserve predicts risk of acute kidney injury after cardiac operation. Ann Thorac Surg. 2018;105(4):1094–1101. doi:10.1016/j.athoracsur.2017.12.03429382510
  • Kashani K, Cheungpasitporn W, Ronco C. Biomarkers of acute kidney injury: the pathway from discovery to clinical adoption. Clin Chem Lab Med. 2017;55(8):1074–1089. doi:10.1515/cclm-2016-097328076311
  • Samoni S, Nalesso F, Meola M, et al. Intra-Parenchymal Renal Resistive Index Variation (IRRIV) describes Renal Functional Reserve (RFR): pilot study in healthy volunteers. Front Physiol. 2016;7:286. doi:10.3389/fphys.2016.0028627458386
  • Meola M, Nalesso F, Petrucci I, Samoni S, Ronco C. Ultrasound in acute kidney disease. Contrib Nephrol. 2016;188:11–20.27169556
  • Meola M, Nalesso F, Petrucci I, Samoni S, Ronco C. Pathophysiology and clinical work-up of acute kidney injury. Contrib Nephrol. 2016;188:1–10.27169469
  • Meola M, Nalesso F, Petrucci I, Samoni S, Ronco C. Clinical scenarios in acute kidney injury: pre-renal acute kidney injury. Contrib Nephrol. 2016;188:21–32.27169621
  • Rizo-Topete LM, Rosner MH, Ronco C. Acute kidney injury risk assessment and the nephrology rapid response team. Blood Purif. 2017;43(1–3):82–88. doi:10.1159/00045240227915329
  • Ronco C. Acute kidney injury biomarkers: are we ready for the biomarker curve? Claudio ronco. Cardiorenal Med. 2019;9:354–357. doi:10.1159/00050344331618745
  • McCullough PA, Ostermann M, Forni LG. Serial urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 and the prognosis for acute kidney injury over the course of critical illness. Cardiorenal Med. 2019;9:358–369. doi:10.1159/00050283731618746
  • Vijayan A, Faubel S, Askenazi DJ, et al. Clinical use of the urine biomarker [TIMP-2] × [IGFBP7] for acute kidney injury risk assessment. AJKD. 2016;68:19–28. doi:10.1053/j.ajkd.2015.12.03326948834
  • Cho WY, Lim SY, Yang JH, Oh SW, Kim MG, Jo SK. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 as biomarkers of patients with established acute kidney injury. Korean J Intern Med. 2019;23.
  • James MT, Pannu N, Hemmelgarn BR, et al. Derivation and external validation of prediction models for advanced chronic kidney disease following acute kidney injury. JAMA. 2017;318(18):1787–1797. doi:10.1001/jama.2017.1632629136443
  • Hsu C, Chinchilli VM, Coca S, et al. Post–acute kidney injury proteinuria and subsequent kidney disease progression.The Assessment, Serial Evaluation, and Subsequent Sequelae in Acute Kidney Injury (ASSESS-AKI) study for the ASSESS-AKI Investigators. JAMA Intern Med. 2020;180(3):402–410. doi:10.1001/jamainternmed.2019.6390
  • Guzzi LM, Bergler T, Binnall B, et al. Clinical use of [TIMP-2]•[IGFBP7] biomarker testing to assess risk of acute kidney injury in critical care: guidance from an expert panel. Crit Care. 2019;23(1):225. doi:10.1186/s13054-019-2504-831221200