91
Views
5
CrossRef citations to date
0
Altmetric
Other

Influence of sodium chloride on wine yeast fermentation performance

, , , , &
Pages 35-42 | Published online: 28 Jun 2010

References

  • Attfield PV, Bell PJL. Genetics and classical genetic manipulations of industrial yeasts. In: Winde JH, editor. Functional Genomics of Industrial Yeasts. Berlin: Springer-Verlag; 2003.
  • Lambrechts MG, Pretorius IS. Yeast and its importance to wine aroma – a review. S Afr J Enol Vitic. 2000;21:97–129.
  • Piskur J, Langkjaer RB. Yeast genome sequencing: the power of comparative genomics. Mol Microbiol. 2004;55(2):381–389.
  • Cavazza A, Versini G, DallaSerra A, Romano F. Characterization of six Saccharomyces cerevisiae strains on the basis of their volatile compounds production, as found in wines of different aroma profiles. Yeast. 1989;5:163–167.
  • Grando MS, Versini G, Nicolini G, Mattivi F. Selective use of wine yeast strains having different volatile phenols production. Vitis. 1993; 32:43–50.
  • Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol R. 2002;66(2):300–372.
  • Hohmann S, Mager WH, eds. The osmotic stress response of Saccahromyces cerevisiae. In: Yeast Stress Responses. Berlin: Springer; 2003: 133–162.
  • Erasmus DJ. Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 2003;3:375–399.
  • Logothetis S, Walker G, Nerantzis E. Effect of salt hyperosmotic stress on yeast cell viability. Proc Nat Sci Matica Srpska Novi Sad. 2007; 113:271–284.
  • Logothetis S. Influence of sodium chloride on wine yeast physiology and fermentation performance. PhD thesis. 2009.
  • Lee SS, Robinson FM, Wang HY. Rapid determination of yeast viability. Biotechnol Bioeng Symp. 1981;11:641–649.
  • Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–428.
  • Rodríguez-Navarro A, Ortega MD. The mechanism of sodium efflux in yeast. FEBS Lett. 1982;138(2):205–208.
  • Fuping L, Yu Wang, Dongqing B, Lianxiang Du. Adaptive response of Saccharomyces cerevisiae to hyperosmotic and oxidative stress. Process Biochem. 2003;40(11):3614–3618.
  • Norberg J, Blomberg A. Metabolic and regulatory changes associated with growth of Saccharomyces cerevisiae in 1.4 m NaCl: Evidence of osmotic induction of glycerol dissimilation via the dihydroxyacetone pathway. J Biol Chem. 1997;272:5544–5554.
  • Oda Y, Tonomura K. Sodium chloride enhances the potential leavening ability of yeast in dough. Food Microbiol. 1993;10(3):249–254.
  • Morris GJ, Winters L, Coulson GE, Clarke KJ. Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. J Gen Microbiol. 1986;129:2023–2034.
  • García MR, Ríos G, Ali R, Bellés JM, Serrano R. Comparative physiology of salt tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology. 1997;143:1125–1131.
  • Burg MB, Dmitrieva NI, Michea LF, Rocha GM. Cell cycle delay and apoptosis in response to osmotic stress. Comp Biochem Physiol A Mol Integr Physiol. 2001;130(3):411–420.
  • Varela JCS, Vanbeekvelt C, Planta RJ, Mager WH. Osmostress-induced changes in yeast genes expression. Mol Microbiol. 1992;6:2183–2190.
  • El-Samargy YA, Zall RR. The influence of sodium chloride on the activity of yeast in the production of single cell protein in whey permeate. J Dairy Sci. 1988;71(5):1135–1140.
  • Speakman HB, Gee AH, Luck JM. The influence of sodium chloride on the growth and metabolism of yeast. J Bacteriol. 1928;15(5):319–340.
  • Soveral G, Madeira A, Loureiro-Dias MC, Moura FT. Water transport in intact yeast cells assessed by fluorescence self quenching. Appl Environ Microbiol. 2007;10:1–12.
  • Shimizu H, Hirasawa T, Ashitani K, et al. Comparison of transcriptional responses to osmotic stress induced by NaCl and sorbitol additions in Saccharomyces cerevisiae using DNA microarray. J Biosci Bioeng. 2006;102(6):568–571.
  • Wojda I, Alonso-Monge R, Bebelman JP, Mager W, Siderius M. Response to high osmotic conditions and elevated temperature in Saccharomyces cerevisiae is controlled by intracellular glycerol and involves coordinate activity of MAP kinase pathways. Microbiology. 2003;149:1193–1204.
  • Swiecilo A, Krawiec Z, Wawryn J, Bartosz G, Bilinski T. Effect of stress on the life span of the yeast Saccharomyces cerevisiae. Acta Biochim Pol. 2000;47(2):355–364.
  • Beney L, de Marañón IM, Marechal P, Moundanga S, Gervais P. Osmotic destruction of Saccharomyces cerevisiae is not related to a high water flow rate across the membrane. Biochem Eng J. 2001; 9(3):205–210.