295
Views
5
CrossRef citations to date
0
Altmetric
Case Report

Hybrid Assistive Limb Functional Treatment for a Patient with Chronic Incomplete Cervical Spinal Cord Injury

, , , , ORCID Icon, , , & show all
Pages 413-420 | Published online: 21 Jun 2021

References

  • Wyndaele M, Wyndaele JJ. Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord. 2006;44:523–529. doi:10.1038/sj.sc.3101893
  • Fawcette JW, Curt A, Steeves JD, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord. 2007;45(3):190–205. doi:10.1038/sj.sc.3102007
  • Jm P, Jenkins NR. Late neurological changes following traumatic spinal cord injury. J Neurosurg. 1988;69:399–402. doi:10.3171/jns.1988.69.3.0399
  • Esquenazi A, Talaty M. Robotics for lower limb rehabilitation. Phys Med Rehabil Clin N Am. 2019;30:385–397. doi:10.1016/j.pmr.2018.12.012
  • Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL. Adv Robot. 2005;19(7):717–734. doi:10.1163/1568553054455103
  • Wall A, Borg J, Palmcrantz S. Clinical application of the hybrid assistive limb (HAL) for gait training-a systematic review. Front Syst Neurosci. 2015;9:48. doi:10.3389/fnsys.2015.00048
  • Aach M, Cruciger O, Sczesny-Kaiser M, et al. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Spine J. 2014;14(12):2847–2853. doi:10.1016/j.spinee.2014.03.042
  • Jansen O, Grasmuecke D, Meindl RC, et al. Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: proof of concept; the results in 21 patients. World Neurosurg. 2018;110:e73–e78. doi:10.1016/j.wneu.2017.10.080
  • Kirshblum SC, Burns SP, Biering-Sørensen F, et al. International standards for neurological classification of spinal cord injury (revised 2011). J Spinal Cord Med. 2011;34:535–546. doi:10.1179/204577211X13207446293695
  • Kirshblum SC, Biering-Sørensen F, Betz R, et al. International standards for neurological classification of spinal cord injury: cases with classification chal- lenges. J Spinal Cord Med. 2014;37(2):120–127. doi:10.1179/2045772314Y.0000000196
  • Ditunno JF Jr, Ditunno PL, Scivoletto G, et al. The walking index for spinal cord injury (WISCI/WISCI II): nature, metric properties, use and misuse. Spinal Cord. 2013;51:346–355. doi:10.1038/sc.2013.9
  • Scivoletto G, Tamburella F, Laurenza L, Torre M, Molinari M, Ditunno JF. Walking index for spinal cord injury version II in acute spinal cord injury: reliability and reproducibility. Spinal Cord. 2014;52:65–69. doi:10.1038/sc.2013.127
  • Lotze M, Braun C, Birbaumer N, Anders S, Cohen LG. Motor learning elicited by voluntary drive. Brain. 2003;126:866–872. doi:10.1093/brain/awg079
  • Sylos-Labini F, Ivanenko YP, Maclellan MJ, et al. Locomotor-like leg movements evoked by rhythmic arm movements in humans. PLoS One. 2014;9:e90775. doi:10.1371/journal.pone.0090775
  • de Kam D, Rijken H, Manintveld T, et al. Arm movements can increase leg muscle activity during submaximal recumbent stepping in neurologically intact individuals. J Appl Physiol. 2013;115(1):34–42. doi:10.1152/japplphysiol.00510.2012
  • Kadone H, Kubota S, Abe T, et al. Muscular activity modulation during post-operative walking with hybrid assistive limb (HAL) in a patient with thoracic myelopathy due to ossification of posterior longitudinal ligament: a case report. Front Neurol. 2020;11:102. doi:10.3389/fneur.2020.00102
  • Kubota S, Abe T, Kadone H, et al. Hybrid assistive limb (HAL) treatment for patients with severe thoracic myelopathy due to ossification of the posterior longitudinal ligament (OPLL) in the postoperative acute/subacute phase: a clinical trial. J Spinal Cord Med. 2019;42:517–525. doi:10.1080/10790268.2018.1525975