164
Views
3
CrossRef citations to date
0
Altmetric
Review

Anti-CD52 Therapy for Multiple Sclerosis: An Update in the COVID Era

&
Pages 237-246 | Published online: 07 Jul 2021

References

  • Domagała A, Kurpisz M. Cd52 antigen - A review. Med Sci Monit. 2001;7(2):325–331.
  • Treumann A, Lifely MR, Schneider P, Ferguson MA. Primary structure of CD52. J Biol Chem. 1995;270(11):6088–99. doi:10.1074/jbc.270.11.6088.
  • Zhao Y, Su H, Shen X, Du J, Zhang X, Zhao Y. The immunological function of CD52 and its targeting in organ transplantation. Inflamm Res. 2017;66(7):571–578. doi:10.1007/s00011-017-1032-8
  • Rao SP, Sancho J, Campos-Rivera J, et al. Human peripheral blood mononuclear cells exhibit heterogeneous CD52 expression levels and show differential sensitivity to alemtuzumab mediated cytolysis. PLoS One. 2012;7(6):1–12. doi:10.1371/journal.pone.0039416
  • Ambrose LR, Morel AS, Warrens AN. Neutrophils express CD52 and exhibit complement-mediated lysis in the presence of alemtuzumab. Blood. 2009;114(14):3052–3055. doi:10.1182/blood-2009-02-203075
  • Masuyama J, Yoshio T, Suzuki K, et al. Characterization of the 4C8 antigen involved in transendothelial migration of CD26hi T cells after tight adhesion to human umbilical vein endothelial cell monolayers. J Exp Med. 1999;189(6):979–990. doi:10.1084/jem.189.6.979
  • Watanabe T, Masuyama J, Sohma Y, et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol. 2006. doi:10.1016/j.clim.2006.05.006
  • Rowan WC, Hale G, Tite JP, Brett SJ. Cross-linking of the CAMPATH-1 antigen (CD52) triggers activation of normal human T lymphocytes. Int Immunol. 1995. doi:10.1093/intimm/7.1.69
  • Shathili AM, Bandala-Sanchez E, John A, et al. Specific sialoforms required for the immune suppressive activity of human soluble CD52. Front Immunol. 2019;10(AUG):1–13. doi:10.3389/fimmu.2019.01967
  • Bandala-Sanchez E, Zhang Y, Reinwald S, et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat Immunol. 2013;14(7):741–748. doi:10.1038/ni.2610
  • Bandala-Sanchez E, Bediaga NG, Goddard-Borger ED, et al. CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci U S A. 2018;115(30):7783–7788. doi:10.1073/pnas.1722056115
  • Toh BH, Kyaw T, Tipping P, Bobik A. Immune regulation by CD52-expressing CD4 T cells. Cell Mol Immunol. 2013;10(5):379–382. doi:10.1038/cmi.2013.35
  • Rashidi M, Bandala-Sanchez E, Lawlor KE, et al. CD52 inhibits toll-like receptor activation of NF-κB and triggers apoptosis to suppress inflammation. Cell Death Differ. 2018;25(2):392–405. doi:10.1038/cdd.2017.173
  • Tati K, Yazdanpanah-Samani M, Ramezani A, Mahmoudi Maymand E, Ghaderi A. Establishment a CHO cell line expressing human CD52 molecule. Rep Biochem Mol Biol. 2016;5(1):56–61.
  • Hale G, Bright S, Chumbley G, et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood. 1983;62(4):873–882. doi:10.1182/blood.v62.4.873.873
  • Riechmann L, Clark M, Waldmann H, Winter G. Reshaping human antibodies for therapy. Nature. 1988;332(6162):323–327. doi:10.1038/332323a0
  • Hale G. The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy. 2001. doi:10.1080/146532401753174098
  • Lowenstein H, Shah A, Chant A, Khan A. Different mechanisms of campath-1H-mediated depletion for CD4+ and CD8+ T cells in peripheral blood. Transpl Int. 2006. doi:10.1111/j.1432-2277.2006.00382.x
  • Ratzinger G, Reagan JL, Heller G, Busam KJ, Young JW. Differential CD52 expression by distinct myeloid dendritic cell subsets: implications for alemtuzumab activity at the level of antigen presentation in allogeneic graft-host interactions in transplantation. Blood. 2003;101(4):1422–1429. doi:10.1182/blood-2002-04-1093
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747. doi:10.1146/annurev.immunol.23.021704.115707
  • Sospedra M, Martin R. Immunology of multiple sclerosis. Semin Neurol. 2016;36(2):115–127. doi:10.1055/s-0036-1579739
  • Hu Y, Turner MJ, Shields J, et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009. doi:10.1111/j.1365-2567.2009.03115.x
  • Simon M, Ipek R, Homola GA, et al. Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis. J Neuroinflammation. 2018;15(1):1–15. doi:10.1186/s12974-018-1263-9
  • Turner MJ, Pang PT, Chretien N, et al. Reduction of inflammation and preservation of neurological function by anti-CD52 therapy in murine experimental autoimmune encephalomyelitis. J Neuroimmunol. 2015;285:4–12. doi:10.1016/j.jneuroim.2015.05.018
  • Pant AB, Wang Y, Mielcarz DW, et al. Alteration of CD39+Foxp3+ CD4 T cell and cytokine levels in EAE/MS following anti-CD52 treatment. J Neuroimmunol. 2017;303:22–30. doi:10.1016/j.jneuroim.2016.12.010
  • Avasarala J. It’s time for combination therapies in multiple sclerosis. Innov Clin Neurosci. 2017.
  • Bogie JFJ, Grajchen E, Wouters E, et al. CNS delivery of anti-CD52 antibodies modestly reduces disease severity in an animal model for multiple sclerosis. Ther Adv Chronic Dis. 2020. doi:10.1177/2040622320947378
  • Ellwardt E, Vogelaar CF, Maldet C, Schmaul S, Bittner S, Luchtman D. Targeting CD52 does not affect murine neuron and microglia function. Eur J Pharmacol. 2020;871(October 2019):172923. doi:10.1016/j.ejphar.2020.172923
  • Moreau T, Coles A, Wing M, et al. CAMPATH-IH in multiple sclerosis. Mult Scler. 1996. doi:10.1177/135245859600100616
  • Evana JR, Bozkurta SB, Thomasa NC, Bagnatoa F. Alemtuzumab for the treatment of multiple sclerosis. Expert Opin Biol Ther. 2018. doi:10.1080/14712598.2018.1425388
  • Thomas K, Eisele J, Rodriguez-Leal FA, Hainke U, Ziemssen T. Acute effects of alemtuzumab infusion in patients with active relapsing-remitting MS. Neurol Neuroimmunol NeuroInflammation. 2016. doi:10.1212/NXI.0000000000000228
  • Coles AJ, Compston DA, Selmaj KW, et al.Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008. doi:10.1056/nejmoa0802670
  • Coles AJ, Cox A, Le Page E, et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J Neurol. 2006. doi:10.1007/s00415-005-0934-5
  • Jones JL, Anderson JM, Phuah CL, et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain. 2010. doi:10.1093/brain/awq176
  • Delcoigne B, Manouchehrinia A, Barro C, et al. Blood neurofilament light levels segregate treatment effects in multiple sclerosis. Neurology. 2020. doi:10.1212/WNL.0000000000009097
  • Cox AL, Thompson SAJ, Jones JL, et al. Lymphocyte homeostasis following therapeutic lymphocyte depletion in multiple sclerosis. Eur J Immunol. 2005. doi:10.1002/eji.200535075
  • Masuyama J, Kaga S, Kano S, Minota S. A novel costimulation pathway via the 4C8 antigen for the induction of CD4 + regulatory T cells. J Immunol. 2002. doi:10.4049/jimmunol.169.7.3710
  • Zhang X, Tao Y, Chopra M, et al. Differential reconstitution of T cell subsets following immunodepleting treatment with alemtuzumab (anti-CD52 monoclonal antibody) in patients with relapsing–remitting multiple sclerosis. J Immunol. 2013. doi:10.4049/jimmunol.1301926
  • Kim Y, Kim G, Shin HJ, et al. Restoration of regulatory B cell deficiency following alemtuzumab therapy in patients with relapsing multiple sclerosis. J Neuroinflammation. 2018. doi:10.1186/s12974-018-1334-y
  • Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal Phase 3 trials of alemtuzumab. JAMA Neurol. 2017. doi:10.1001/jamaneurol.2017.0676
  • Rolla S, Maglione A, De Mercanti SF, Clerico M. The meaning of immune reconstitution after alemtuzumab therapy in multiple sclerosis. Cells. 2020. doi:10.3390/cells9061396
  • Cohen JA, Coles AJ, Arnold DL, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012. doi:10.1016/S0140-6736(12)61769-3
  • Coles AJ, Twyman CL, Arnold DL, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012. doi:10.1016/S0140-6736(12)61768-1
  • Havrdova E, Arnold DL, Cohen JA, et al. Alemtuzumab CARE-MS I 5-year follow-up. Neurology. 2017. doi:10.1212/wnl.0000000000004313
  • Coles AJ, Cohen JA, Fox EJ, et al. Alemtuzumab CARE-MS II 5-year follow-up: efficacy and safety findings. Neurology. 2017. doi:10.1212/WNL.0000000000004354
  • Van Wijmeersch B, Singer BA, Boster A, et al. Efficacy of alemtuzumab over 6 years in relapsing–remitting multiple sclerosis patients who relapsed between courses 1 and 2: post hoc analysis of the CARE-MS studies. Mult Scler J. 2020. doi:10.1177/1352458519881759
  • Steingo B, Al Malik Y, Bass AD, et al. Long-term efficacy and safety of alemtuzumab in patients with RRMS: 12-year follow-up of CAMMS223. J Neurol. 2020. doi:10.1007/s00415-020-09983-1
  • Michailidou A, Trenz H-J, de Wilde P. Annex I. Internet Eur Integr. 2019;167–172. doi:10.2307/j.ctvdf0dxq.12
  • Ziemssen T, Thomas K. Alemtuzumab in the long-term treatment of relapsing-remitting multiple sclerosis: an update on the clinical trial evidence and data from the real world. Ther Adv Neurol Disord. 2017. doi:10.1177/1756285617722706
  • Barclay K, Carruthers R, Traboulsee A, et al. Best practices for long-term monitoring and follow-up of alemtuzumab-treated MS patients in real-world clinical settings. Front Neurol. 2019. doi:10.3389/fneur.2019.00253
  • Bierhansl L, Ruck T, Pfeuffer S, Gross CC, Wiendl H, Meuth SG. Signatures of immune reprogramming in anti-CD52 therapy of MS: markers for risk stratification and treatment response. Neurol Res Pract. 2019. doi:10.1186/s42466-019-0045-x
  • Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 8–11 April 2019. European Medicines Agency. Availabvle from: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-8-11-april-2019. Accessed May 27, 2021.
  • Meeting highlights from the Pharmacovigilance Risk Assessment Committee (PRAC) 28–31 October 2019. European Medicines Agency. Availabvle from: https://www.ema.europa.eu/en/news/meeting-highlights-pharmacovigilance-risk-assessment-committee-prac-28-31-october-2019. Accessed May 27, 2021.
  • CHMP. Lemtrada; INN: alemtuzumab. Availabvle from: www.ema.europa.eu/contact. Accessed February 15, 2021.
  • Buonomo AR, Zappulo E, Viceconte G, Scotto R, Borgia G, Gentile I. Risk of opportunistic infections in patients treated with alemtuzumab for multiple sclerosis. Expert Opin Drug Saf. 2018. doi:10.1080/14740338.2018.1483330
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. doi:10.1016/S0140-6736(20)30628-0
  • Ritchie AI, Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. 2020. doi:10.1016/S0140-6736(20)30691-7
  • Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a Retrospective Cohort Study. Lancet. 2020. doi:10.1016/S0140-6736(20)30566-3
  • Zheng C, Kar I, Chen CK, et al. Multiple sclerosis disease-modifying therapy and the COVID-19 pandemic: implications on the risk of infection and future vaccination. CNS Drugs. 2020. doi:10.1007/s40263-020-00756-y
  • FDA warns about rare but serious risks of stroke and blood vessel wall tears with multiple sclerosis drug Lemtrada (alemtuzumab). FDA. Availabvle from: https://www.fda.gov/drugs/drug-safety-and-availability/fda-warns-about-rare-serious-risks-stroke-and-blood-vessel-wall-tears-multiple-sclerosis-drug. Accessed February 15, 2021.
  • Oxley TJ, Mocco J, Majidi S, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020. doi:10.1056/nejmc2009787
  • Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020. doi:10.1212/WNL.0000000000009507
  • Carandini T, Pietroboni AM, Sacchi L, et al. Alemtuzumab in multiple sclerosis during the COVID-19 pandemic: a mild uncomplicated infection despite intense immunosuppression. Mult Scler J. 2020. doi:10.1177/1352458520926459
  • Fernández-Díaz E, Gracia-Gil J, García-García JG, Palao M, Romero-Sánchez CM, Segura T. COVID-19 and multiple sclerosis: a description of two cases on alemtuzumab. Mult Scler Relat Disord. 2020. doi:10.1016/j.msard.2020.102402
  • Guevara C, Villa E, Cifuentes M, Naves R, Grazia J. Mild COVID-19 infection in a patient with multiple sclerosis and severe depletion of T-lymphocyte subsets due to alemtuzumab. Mult Scler Relat Disord. 2020. doi:10.1016/j.msard.2020.102314
  • Matías-Guiu J, Montero-Escribano P, Pytel V, Porta-Etessam J, Matias-Guiu JA. Potential COVID-19 infection in patients with severe multiple sclerosis treated with alemtuzumab. Mult Scler Relat Disord. 2020. doi:10.1016/j.msard.2020.102297
  • Fiorella C, Lorna G. COVID-19 in a multiple sclerosis (MS) patient treated with alemtuzumab: insight to the immune response after COVID. Mult Scler Relat Disord. 2020;46:102447. doi:10.1016/j.msard.2020.102447
  • Parrotta E, Kister I, Charvet L, et al. COVID-19 outcomes in MS: observational study of early experience from NYU multiple sclerosis comprehensive care center. Neurol Neuroimmunol Neuroinflamm. 2020. doi:10.1212/NXI.0000000000000835
  • Rubin LG, Levin MJ, Ljungman P, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis. 2014. doi:10.1093/cid/cit684
  • Riva A, Barcella V, Benatti SV, et al. Vaccinations in patients with multiple sclerosis: a Delphi consensus statement. Mult Scler J. 2020. doi:10.1177/1352458520952310
  • Ciotti JR, Valtcheva MV, Cross AH. Effects of MS disease-modifying therapies on responses to vaccinations: a review. Mult Scler Relat Disord. 2020. doi:10.1016/j.msard.2020.102439
  • European Medicines Agency. Annex I; Summary of Product Characteristics: Comirnaty concentrate for dispersion for injection; COVID-19 mRNA Vaccine (nucleoside modified); 2020. Available from: https://ec.europa.eu/health/documents/community-register/2020/20201221150522/anx_150522_en.pdf. Accessed June 29, 2021.
  • European Medicines Agency. Annex I; Summary of Product Characteristics: COVID-19 Vaccine Moderna dispersion for injection; COVID-19 mRNA Vaccine (nucleoside modified); 2020. Available from: https://www.ema.europa.eu/en/documents/product-information/covid-19-vaccine-moderna-epar-product-information_en.pdf. Access June 29, 2021.
  • European Medicines Agency. Annex I; Summary of Product Characteristics: COVID-19 Vaccine AstraZeneca suspension for injection; COVID-19 Vaccine (ChAdOx1-S [recombinant]); 2021. Available from: https://www.ema.europa.eu/en/documents/product-information/covid-19-vaccine-astrazeneca-product-information-approved-chmp-29-january-2021-pending-endorsement_en.pdf. Accessed June 29, 2021.
  • European Medicines Agency. Annex I; Summary of Product Characteristics: COVID-19 Vaccine Janssen suspension for injection; COVID-19 vaccine (Ad26.COV2-S [recombinant]); 2021. Available from: https://www.ema.europa.eu/en/documents/product-information/covid-19-vaccine-janssen-epar-product-information_en.pdf. Accessed June 29, 2021.