155
Views
1
CrossRef citations to date
0
Altmetric
Review

Next-Generation Allergen-Specific Immunotherapy for Japanese Cedar Pollinosis Using Molecular Approaches

Pages 213-224 | Published online: 02 Jul 2021

References

  • Yamada T, Saito H, Fujieda S. Present state of Japanese cedar pollinosis: the national affliction. J Allergy Clin Immunol. 2014;133(3):632–639. doi:10.1016/j.jaci.2013.11.002
  • Okamoto Y, Horiguchi S, Yamamoto H, et al. Present situation of cedar pollinosis in Japan and its immune responses. Allergol Int. 2009;58(2):155–162. doi:10.2332/allergolint.08-RAI-0074
  • Okubo K, Kurono Y, Ichimura K, et al. Japanese guidelines for allergic rhinitis 2020. Allergol Int. 2020;69(3):331–345. doi:10.1016/j.alit.2020.04.001
  • Sakashita M, Hirota T, Harada M, et al. Prevalence of allergic rhinitis and sensitization to common aeroallergens in a Japanese population. Int Arch Allergy Immunol. 2010;151(3):255–261. doi:10.1159/000242363
  • Urashima M, Asaka D, Endo T, et al. Japanese cedar pollinosis in Tokyo residents born after massive national afforestation policy. Allergy. 2018;73(12):2395–2397. doi:10.1111/all.13575
  • Sone T, Komiyama N, Shimizu K, et al. Cloning and sequencing of cDNA coding for Cry j I, a major allergen of Japanese cedar pollen. Biochem Biophys Res Commun. 1994;199(2):619–625. doi:10.1006/bbrc.1994.1273
  • Komiyama N, Sone T, Shimizu K, et al. cDNA cloning and expression of Cry j II the second major allergen of Japanese cedar pollen. Biochem Biophys Res Commun. 1994;201(2):1021–1028. doi:10.1006/bbrc.1994.1804
  • Namba M, Kurose M, Torigoe K, et al. Molecular cloning of the second major allergen, Cry j II, from Japanese cedar pollen. FEBS Lett. 1994;353(2):124–128. doi:10.1016/0014-5793(94)01022-6
  • Osada T, Harada T, Asaka N, et al. Identification and gene cloning of a new major allergen Cha o 3 from Chamaecyparis obtusa (Japanese cypress) pollen. J Allergy Clin Immunol. 2016;138(3):911–913. doi:10.1016/j.jaci.2016.03.026
  • Osada T, Tanaka Y, Yamada A, et al. Identification of Cha o 3 homolog Cry j 4 from Cryptomeria japonica (Japanese cedar) pollen: limitation of the present Japanese cedar-specific ASIT. Allergol Int. 2018;67(4):467–474. doi:10.1016/j.alit.2018.02.004
  • Fujimura T, Kawamoto S. Spectrum of allergens for Japanese cedar pollinosis and impact of component-resolved diagnosis on allergen-specific immunotherapy. Allergol Int. 2015;64(4):312–320. doi:10.1016/j.alit.2015.05.008
  • Frew AJ. Allergen immunotherapy. J Allergy Clin Immunol. 2010;125:S306–313. doi:10.1016/j.jaci.2009.10.064
  • Larche M, Akdis CA, Valenta R. Immunological mechanisms of allergen-specific immunotherapy. Nature Rev Imunol. 2006;6(10):761–771. doi:10.1038/nri1934
  • Akdis CA. Therapies for allergic inflammation: refining strategies to induce tolerance. Nat Med. 2012;18(5):736–749. doi:10.1038/nm.2754
  • Radulovic S, Wilson D, Calderon M, Durham S. Systematic reviews of sublingual immunotherapy (SLIT). Allergy. 2011;66(6):740–752. doi:10.1111/j.1398-9995.2011.02583.x
  • Linhart B, Valenta R. Molecular design of allergy vaccines. Curr Opin Immunol. 2005;17(6):646–655. doi:10.1016/j.coi.2005.09.010
  • Valenta R, Ferreira F, Focke-Tajkl M, et al. From allergen genes to allergy vaccines. Ann Rev Immunol. 2010;28:211–241. doi:10.1146/annurev-immunol-030409-101218
  • Larché R, Wraith DC. Peptide-based therapeutic vaccines for allergic and autoimmune diseases. Nat Med. 2005;11:S69–76. doi:10.1038/nm1226
  • Inuo C, Ando H, Tanaka K, et al. Long-term immunological effects of Japanese cedar pollen-based subcutaneous immunotherapy. Allergol Int. 2018;67(3):408–410. doi:10.1016/j.alit.2017.11.002
  • Passalacqua G, Bagnasco D, Canonica GW. 30 years of sublingual immunotherapy. Allergy. 2020;75(5):1107–1120. doi:10.1111/all.14113
  • Ohashi-Doi K, Lund K, Mitobe Y, Okamiya K. State of the art: development of a sublingual allergy immunotherapy tablet for allergic rhinitis in Japan. Biol Pharm Bull. 2020;43(1):41–48. doi:10.1248/bpb.b19-00093
  • Yonekura S, Gotoh M, Kaneko S, et al. Treatment duration-dependent efficacy of Japanese cedar pollen sublingual immunotherapy: evaluation of a Phase II/III trial over three pollen dispersal seasons. Allergol Int. 2019;68(4):494–505. doi:10.1016/j.alit.2019.05.002
  • Gotoh M, Yonekura S, Imai T, et al. Long-term efficacy and dose-finding trial of Japanese cedar pollen sublingual immunotherapy tablet. J Allergy Clin Immunol Pract. 2019;7(4):1287–1297. doi:10.1016/j.jaip.2018.11.044
  • Okamoto Y, Okubo K, Yonekura S, et al. Efficacy and safety of sublingual immunotherapy for two seasons in patients with Japanese cedar pollinosis. Int Arch Allergy Immunol. 2015;166(3):177–188. doi:10.1159/000381059
  • Fujimura T, Yonekura S, Taniguchi Y, et al. The induced regulatory T cell level, defined as the proportion of IL-10(+)Foxp3(+) cells among CD25(+)CD4(+) leukocytes, is a potential therapeutic biomarker for sublingual immunotherapy: a preliminary report. Int Arch Allergy Immunol. 2010;153(4):378–387. doi:10.1159/000316349
  • Fujimura T, Yonekura S, Horiguchi S, et al. Increase of regulatory T cells and the ratio of specific IgE to total IgE are candidates for response monitoring or prognostic biomarkers in two-year sublingual immunotherapy (SLIT) for Japanese cedar pollinosis. Clin Immunol. 2011;139(1):65–74. doi:10.1016/j.clim.2010.12.022
  • Nomura Y, Okubo K, Nakamura T, et al. Long-term treatment of Japanese cedar pollinosis with Japanese cedar pollen SLIT drops and persistence of treatment effect: a post-marketing clinical trial. Allergol Int. 2021;70(1):96–110. doi:10.1016/j.alit.2020.05.008
  • Canonica GW, Passalacqua G. Noninjection routes for immunotherapy. J Allergy Clin Immunol. 2003;111(3):437–448. doi:10.1067/mai.2003.129
  • Takaiwa F. Update of the use of transgenic rice seeds in oral immunotherapy. Immunotherapy. 2013;5(3):301–312. doi:10.2217/imt.13.4
  • Takaiwa F, Wakasa Y, Takagi H, Hiroi T. Rice seed for delivery of vaccines to gut mucosal immune tissues. Plant Biotechnol J. 2015;13(8):1041–1055. doi:10.1111/pbi.12423
  • Takaiwa F, Wakasa Y, Hayashi S, Kawakatsu T. An overview on the strategies to exploit rice endosperm as production platform for biopharmaceuticals. Plant Sci. 2017;263:201–209. doi:10.1016/j.plantsci.2017.07.016
  • Mayer L, Shao L. Therapeutic potential of oral tolerance. Nat Rev Immunol. 2004;4(6):407–419. doi:10.1038/nri1370
  • Tordesillas L, Berin MC. Mechanisms of oral tolerance. Clin Rev Allergy Immunol. 2018;55(2):107–117. doi:10.1007/s12016-018-8680-5
  • Terada T, Omura S, Kikuoka Y, et al. Sustained effects of intralymphatic pollen specific immunotherapy on Japanese cedar pollinosis. Rhinology. 2020;58(3):241–247. doi:10.4193/Rhin19.301
  • Jones SM, Sicherer SH, Burks AW, et al. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J Allergy Clin Immunol. 2017;139(4):1242–1252. doi:10.1016/j.jaci.2016.08.017
  • Prickett SR, Rolland JM, O’Hehir RE. Immunoregulatory T cell epitope peptides: the new frontier in allergy therapy. Clin Exp Allergy. 2015;45(6):1015–1026. doi:10.1111/cea.12554
  • Hirahara K, Saito S, Serizawa N, et al. Oral administration of a dominant T-cell determinant peptide inhibits allergen-specific TH1 and TH2 cell responses in Cry j 2-primed mice. J Allergy Clin Immunol. 1998;102(6):961–967. doi:10.1016/S0091-6749(98)70334-3
  • Murasugi T, Nakagami Y, Yoshitomi T, et al. Oral administration of a T cell epitope inhibits symptoms and reactions of allergic rhinitis in Japanese cedar pollen allergen-sensitized mice. Eur J Pharmacol. 2005;510(1–2):143–148. doi:10.1016/j.ejphar.2005.01.003
  • Takagi H, Hiroi T, Yang L, et al. A rice-based edible vaccine expressing multiple epitopes induces oral tolerance for inhibition of Th2-mediated IgE responses. Proc Natl Acad Sci USA. 2005;102(26):17525–17530. doi:10.1073/pnas.0503428102
  • Hirahara K, Tatsuta T, Takatori T, et al. Preclinical evaluation of an immunotherapeutic peptide comprising 7 T-cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen allergens. J Allergy Clin Immunol. 2001;108(1):94–100. doi:10.1067/mai.2001.115481
  • Sone T, Morikubo K, Miyahara M, et al. T cell epitopes in Japanese cedar (Cryptomeria japonica) pollen allergens: choice of major T cell epitopes in Cry j 1 and Cry j 2 toward design of the peptide-based immunotherapeutics for the management of Japanese cedar pollinosis. J Immunol. 1998;161(1):448–457.
  • Tsunematsu M, Yamaji T, Kozutsumi D, et al. Effect of Cry-consensus peptide, a novel recombinant peptide for immunotherapy of Japanese cedar pollinosis, on an experimental allergic rhinitis model in B10.S mice. Allergol Int. 2007;56(4):465–472. doi:10.2332/allergolint.O-07-495
  • Takagi H, Saito S, Yang L, Nagasaka S, Nishizawa N, Takaiwa F. Oral immunotherapy against a pollen allergy using seed-based peptide vaccine. Plant Biotech J. 2005;3(5):521–533. doi:10.1111/j.1467-7652.2005.00143.x
  • Takaiwa F, Takagi H, Hirose S, Wakasa Y. Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. Plant Biotechnol J. 2007;5(1):84–89. doi:10.1111/j.1467-7652.2006.00220.x
  • Endo T, Asaka D, Nakayama T, et al. Immunological and symptomatic effects of oral intake of transgenic rice containing 7 linked major T-cell epitopes from Japanese cedar pollen allergens. Int Arch Allergy Immunol. 2021;182(2):109–119. doi:10.1159/000509996
  • Endo T, Asaka D, Nakayama T, et al. Long-term oral administration of transgenic rice containing cedar pollen T-cell epitopes potentially improve medication and allergy related quality of life scores. Allergy Ashma Proc. 2021.
  • Takaiwa F, Yang L. Development of a rice-based peptide vaccine for Japanese cedar and cypress pollen allergies. Transgenic Res. 2014;23(4):573–584. doi:10.1007/s11248-014-9790-3
  • Wakasa Y, Takagi H, Hirose S, et al. Oral immunotherapy with transgenic rice seed containing destructed Japanese cedar pollen allergens, Cry j 1 and Cry j 2, against Japanese cedar pollinosis. Plant Biotech J. 2013;11(1):66–76. doi:10.1111/pbi.12007
  • Takaiwa F, Yang L, Takagi H, et al. Development of rice-seed-based oral allergy vaccines containing hypoallergenic Japanese cedar pollen allergen derivatives for immunotherapy. J Agric Food Chem. 2019;67(47):13127–13138. doi:10.1021/acs.jafc.9b05421
  • Takaishi S, Saito S, Kamada M. Evaluation of basophil activation caused by transgenic rice seeds expressing whole T cell epitopes of the major Japanese cedar pollen allergens. Clin Transl Allergy. 2019;9:11. doi:10.1186/s13601-019-0249-8
  • Fukuda K, Ishida W, Harada Y, et al. Prevention of allergic conjunctivitis in mice by a rice-based edible vaccine containing modified Japanese cedar pollen allergens. Br J Ophthalmol. 2015;99(5):705–709. doi:10.1136/bjophthalmol-2014-305842
  • Fukuda K, Ishida W, Harada Y, et al. Efficacy of oral immunotherapy with a rice-based edible vaccine containing hypoallergenic Japanese cedar pollen allergens for treatment of established allergic conjunctivitis in mice. Allergol Int. 2018;67(1):119–123. doi:10.1016/j.alit.2017.06.006
  • Saito S, Takagi H, Wakasa Y, et al. Safety and efficacy of rice seed-based oral allergy vaccine for Japanese cedar pollinosis in Japanese monkeys. Mol Immunol. 2020;125:63–69. doi:10.1016/j.molimm.2020.06.019
  • Toda M, Sato H, Takebe Y, et al. Inhibition of immunoglobulin E response to Japanese cedar pollen allergen (Cry j 1) in mice by DNA immunization: different outcomes dependent on the plasmid DNA inoculation method. Immunology. 2000;99(2):179–186. doi:10.1046/j.1365-2567.2000.00935.x
  • Toda M, Kasai M, Hosokawa H, et al. DNA vaccine using invariant chain gene for delivery of CD4+ T cell epitope peptide derived from Japanese cedar pollen allergen inhibits allergen-specific IgE response. Eur J Immunol. 2002;32(6):1631–1639. doi:10.1002/1521-4141(200206)32:6<1631::AID-IMMU1631>3.0.CO;2-O
  • Su Y, Connolly M, Marketon A, Heiland T. CryJ-LAMP DNA vaccines for Japanese red cedar allergy induce robust Th1-type immune responses in murine model. J Immunol Res. 2016;2016:4857869. doi:10.1155/2016/4857869
  • Su Y, Romeu-Bonilla E, Anagnostou A, et al. Safety and long-term immunological effects of CryJ2-LAMP plasmid vaccine in Japanese red cedar atopic subjects: a Phase I study. Vaccin Immunother. 2017;13(12):2804–2813. doi:10.1080/21645515.2017.1329070
  • Aoki R, Saito A, Azakami H, Kato A. Effects of various saccharides on the masking of epitope sites and uptake in the gut of cedar allergen Cry j 1-saccharide conjugates by a naturally occurring Maillard reaction. J Agric Food Chem. 2010;58(13):7986–7990. doi:10.1021/jf100793d
  • Murakami D, Sawatsubashi M, Kikkawa S, et al. Safety and efficacy of a new regimen of short-term oral immunotherapy with Cry j 1-galactomannan conjugate for Japanese cedar pollinosis: a prospective, randomized, open-label study. Allergol Int. 2015;64(2):161–168. doi:10.1016/j.alit.2014.10.009
  • Kaburaki Y, Fujimura T, Kurata K, et al. Induction of Th1 immune responses to Japanese cedar pollen allergen (Cry j 1) in mice immunized with Cry j 1 conjugated with CpG oligodeoxynucleotide. Comp Immunol Microbiol Infect Dis. 2011;34(2):157–161. doi:10.1016/j.cimid.2010.06.005
  • Suzuki M, Ohta N, Min WP, et al. Immunotherapy with CpG DNA conjugated with T-cell epitope peptide of an allergenic Cry j 2 protein is useful for control of allergic conditions in mice. Int Immunopharmacol. 2007;7(1):46–54. doi:10.1016/j.intimp.2006.08.010
  • Ishii M, Koyama A, Iseki H, et al. Anti-allergic potential of oligomannose-coated liposome-entrapped Cry j 1 as immunotherapy for Japanese cedar pollinosis in mice. Immunopharmacol. 2010;10(9):1041–1046. doi:10.1016/j.intimp.2010.06.003
  • Fujimura T, Fujinami K, Ishikawa R, et al. Recombinant fusion allergens, Cry j 1 and Cry j 2 from Japanese cedar pollen, conjugated with polyethylene glycol potentiate the attenuation of Cry j 1-specific IgE production in Cry j 1-sensitized mice and Japanese cedar pollen allergen-sensitized monkeys. Int Arch Allergy Immunol. 2015;168(1):32–43. doi:10.1159/000441141
  • Takagi H, Hiroi T, Yang L, et al. Efficient induction of oral tolerance by fusing cholera toxin B subunit with allergen-specific T-cell epitopes accumulated in rice seed. Vaccine. 2008;26(48):6027–6030. doi:10.1016/j.vaccine.2008.09.019
  • Valenta R, Campana R, Focke-Tejkl M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: lessons from the past and novel mechanisms of action for the future. J Allergy Clin Immunol. 2016;137(2):351–357. doi:10.1016/j.jaci.2015.12.1299